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Jacobi polynomials P (α,β )
n

P
(α,β )
n , α >−1, β >−1: a class of orthogonal degree-n

polynomials∫ 1

−1
(1− x)α(1+ x)βPn(x)Pm(x)dx = ‖Pn‖2 δn,m.

P
(−1/2,−1/2)
n = Tn: the nth−Chebyshev polynomial

P
(0,0)
n = Ln: the nth−Legendre polynomial

Explicit representation for x ∈ R (extension to α,β ∈ R)

P
(α,β )
n (x) =

n

∑
µ=0

(
n+α

n−µ

)(
n+β

µ

)(
x−1
2

)µ(x +1
2

)n−µ

.
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Statement of the problem, motivations
Known results

The problem, its applications

Assume x ∈ (−1, 1). What is the large n−asymptotic behavior
of:

P
(α,β )
n (x)? P

(α+an,β )
n (x), a >−1?

Most recent direct applications:

In probablity to the so-called bead process (B. Fleming-
P. Forrester- E. Nordenstam, 2010)

In quantum physics to determine the asymptotic behavior
of Hadamard walks (H. Carteret- M. Ismail- B. Richmond,
2003): the case x = 0.
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Darboux’s Theorem (≈ 1900): the case a = 0

Theorem
Let α,β >−1 and let θ ∈ [ε,π− ε] then the Jacobi
polynomials satisfy the following asymptotic expansion

P
(α,β )
n (cos(θ )) =

1√
nπ

k(θ )cos(Nθ + γ)+O
(
n−3/2

)
,

where

k(θ ) =
1√
π

(
sin

θ

2

)−α− 1
2
(
cos

θ

2

)−β− 1
2
,

N = n+(α +β +1)/2, γ =−(α +
1
2
)π/2,0< θ < π.
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The general case a >−1

Group 1 (L. Chen, M. Ismail, S. Izen, ...):

Tool: repeat Darboux’s approach

How ? Compute ∑n≥0P
(α+an,β )
n (x)tn + apply Darboux’s

method

Conclusion: very technical and most of the results are
inaccurate.
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The general case a >−1

Group 2 (E. Saff, R. Varga, W. Gawronski, B. Shawyer, C.
Bosbach, ...)

Tool: Steepest descent method.

How ? Write P
(α+an,β )
n =

∫
C g(z)enf (z)dz + Choose

suitable C

Conclusion: works for any a ≥ 0 but method difficult to
apply (find the right contour)
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The general case a >−1

B. Fleming- P. Forrester- E. Nordenstam (2010).

Tool: Darboux’s method.

Corrects Group 1 for a ∈ [0, 2λ

1−λ
).

Conclusion: same decay in n of

λ
anP

(α+an,β )
n (1−2λ

2)

but with different (right) prefactor + application to the
bead process.
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The case a ∈ (− 2λ

1+λ
, 2λ

1−λ
) (1st part)

Theorem
Let α, β >−1, a>−1 and λ ∈ (0, 1). We have the following
asymptotic expansion as n→ ∞.
1) If a ∈ (− 2λ

1+λ
, 2λ

1−λ
) then

P
(α+an,β)
n (1−2λ

2) =

√
2
nπ

λ−α−an((1−λ 2)(a+1))−
β

2

((1−λ 2)((a+2)λ +a)((a+2)λ −a))
1
4

· cos
(

(n+1)h(ϕ+) + (α−a)ϕ+ + (β −1)ψ+
π

4

)(
1+O(n−1)

)
.

The phases ϕ+,h(ϕ+),ψ ∈ [0,2π] depend on a,λ .
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The case a ∈
{ 2λ

1−λ
,− 2λ

1+λ

}
(2nd part)

Theorem

2) If a = 2λ

1−λ
then

P
(an+α,β)
n (1−2λ

2) =
λ−an−α (1+ λ )−β

32/3Γ(2/3)n1/3λ 1/3(1+ λ )1/3

(
1+O(n−1/3)

)
If a =− 2λ

1+λ
then

P
(an+α,β)
n (1−2λ

2) =
Γ(1/3)λ−α−an(1−λ )−β

32/3πn1/3λ 1/3(1−λ )1/3

(
1+O(n−1/3)

)
·
√

3
2

(
cos((an+ α)π)−

√
3sin((an+ α)π)

)
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The case a ∈ ( 2λ

1−λ
,+∞) (3rd part)

Theorem

3) If a ∈ ( 2λ

1−λ
,+∞) then the quantity

λ
anP

(an+α,β )
n (1−2λ

2)

decays exponentially with n.
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The case a ∈ (−1,− 2λ

1−λ
) (4th and last part)

Theorem

4) If a ∈ (−1,− 2λ

1+λ
) and an+α is an integer then the

quantity
λ
anP

(an+α,β )
n (1−2λ

2)

decays exponentially with n. Else (i.e if an+α is not an
integer)

λ
anP

(an+α,β )
n (1−2λ

2)

increases exponentially with n.
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Integral representation for Jacobi polynomials

Lemma
Let n be an integer, a, α, β >−1, λ ∈ (0, 1). For any
x ∈ (λ , 1/λ )

λ
an+α(1−λ

2)βP
(an+α,β )
n (1−2λ

2)

=
1
π

ℜ

{∫
π

0
zα+1 (1−λz)β

z−λ

(
za+11−λz

z−λ

)n
∣∣∣∣∣
z=xe iϕ

dϕ

}

− sin(π(α +an))

π

∫ x

0

(1+λ t)β tα

t+λ

(
t(a+1)1+λ t

t+λ

)n

dt.
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