A generalization to several variables of Löwner's Theorem on operator-monotone functions

Nicholas Young

Leeds and Newcastle Universities

Joint work with Jim Agler and John E. McCarthy

St Petersburg, 29th June 2016

Meeting in honour of Victor Petrovich Havin

Operator-monotone functions

Let *I* be an open interval in \mathbb{R} . A function $f : I \to \mathbb{R}$ is operator-monotone if $f(A) \leq f(B)$ whenever A, B are selfadjoint operators such that $A \leq B$ and the spectra of A, B are contained in *I*.

Examples: f(x) = -1/x is operator-monotone on $(0, \infty)$ and on $(-\infty, 0)$.

 $f(x) = \sqrt{x}$ is operator-monotone on $(0, \infty)$.

 $f(x) = x^2$ is not operator-monotone on $(0, \infty)$.

The Pick class

Let $\Pi = \{z \in \mathbb{C} : \text{Im } z > 0\}$, the upper halfplane.

The Pick class \mathcal{P} is the set of holomorphic functions f on Π such that Im $f \geq 0$ on Π .

Some functions in \mathcal{P} : \sqrt{z} , -1/z, log z, tan z.

For any open interval $I \subset \mathbb{R}$, define the Pick class $\mathcal{P}(I)$ of I to be the set of restrictions to I of functions $f \in \mathcal{P}$ that are analytic on I.

Löwner's theorem (1934)

Let $I \subset \mathbb{R}$ be an open interval. A real-valued function on I is operator-monotone if and only if $f \in \mathcal{P}(I)$.

Local versus global

Say that a real-valued C^1 function f on a real interval I is locally operator-monotone if, whenever S(t), $0 \le t < 1$, is a C^1 curve of selfadjoint matrices with spectra contained in I,

$$S'(0) \ge 0 \qquad \Rightarrow \qquad (f \circ S)'(0) \ge 0.$$

Then $f \in C^1$ is operator-monotone on I if and only if f is locally operator-monotone on I.

Sufficiency follows from

$$f(B) - f(A) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} f\left((1-t)A + tB\right) \mathrm{d}t.$$

Operator-monotonicity in 2 variables

Let E be an open set in \mathbb{R}^2 . Say that a real-valued function f on E is operator-monotone if $f(A) \leq f(B)$ whenever $A = (A_1, A_2)$ and $B = (B_1, B_2)$ are commuting pairs of selfadjoint operators such that $A_1 \leq B_1$ and $A_2 \leq B_2$ and the joint spectra of A and B are contained in E.

Say that $f \in C^1(E)$ is locally operator-monotone if, whenever $S(t) = (S_1(t), S_2(t)), 0 \le t < 1$, is a C^1 curve of commuting pairs of selfadjoint matrices with joint spectra contained in E,

 $S'(0) \ge 0 \qquad \Rightarrow \qquad (f \circ S)'(0) \text{ exists and } \ge 0.$

Local versus global in 2 variables

If f is operator-monotone on E then f is locally operatormonotone on E (easy). Does the converse hold? Example

$$A = \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix},$$
$$B = \begin{pmatrix} \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix} \end{pmatrix}.$$

A and B are commuting pairs of selfadjoint matrices and $A \leq B$. There is *no* commuting pair of selfadjoint matrices lying strictly between A and B.

It is unclear whether locally operator-monotone functions are operator-monotone on a general convex open set.

The Pick class in d variables

Define the *d*-variable Pick class \mathcal{P}^d to be the set of holomorphic functions F on Π^d such that Im $F \ge 0$ on Π^d .

The Pick-Agler class \mathcal{PA}^d is the set of functions $F \in \mathcal{P}^d$ such that $\operatorname{Im} F(T) \geq 0$ for every *d*-tuple *T* of commuting operators having strictly positive imaginary parts.

For $F \in \mathcal{PA}^d$ there exist positive analytic kernels A^1, \ldots, A^d on Π^d such that, for all $z, w \in \Pi^d$,

 $F(z) - \overline{F(w)} = (z^1 - \overline{w}^1)A^1(z, w) + \dots + (z^d - \overline{w}^d)A^d(z, w),$ and conversely.

Cauchy transforms of positive measures

Let $I \subset \mathbb{R}$ be an interval and let μ be a positive measure on $\mathbb{R} \setminus I$.

The Cauchy transform of μ is the function

$$\widehat{\mu}(z) \stackrel{\text{def}}{=} \int_{\mathbb{R}} \frac{\mathrm{d}\mu(s)}{s-z},$$

defined for $z \notin \mathbb{R} \setminus I$.

 $\hat{\mu}$ is locally operator monotone on *I*.

Proof:

Let
$$S(t) = A + tM + o(t)$$
 for $0 \le t < 1$ where $M \ge 0$.

$$\frac{1}{t} (\hat{\mu}(S(t)) - \hat{\mu}(S(0)) = \frac{1}{t} \int (s - S(t))^{-1} - (s - S(0))^{-1} d\mu(s)$$

$$= \int (s - S(t))^{-1} \frac{S(t) - S(0)}{t} (s - S(0))^{-1} d\mu(s)$$

$$= \int (s - A - tM - o(t))^{-1} M(s - A)^{-1} d\mu(s)$$

$$\to \int (s - A)^{-1} M(s - A)^{-1} d\mu(s).$$

Thus $(\hat{\mu} \circ S)'(0) \geq 0$.

A class of operator-monotone functions

Let E be an open rectangle in \mathbb{R}^d .

Let \mathcal{M} be a Hilbert space and let $P = (P^1, \ldots, P^d)$ be a tuple of orthogonal projections on \mathcal{M} summing to $1_{\mathcal{M}}$. For $z \in \mathbb{C}^d$ let z_P denote $z^1P^1 + \cdots + z^dP^d$.

Let X be a densely defined self-adjoint operator on \mathcal{M} such that $X - z_P$ is invertible for $z \in E$ and let $v \in \mathcal{M}$. The function

$$F(z) = \left\langle (X - z_P)^{-1} v, v \right\rangle_{\mathcal{M}}$$
 for $z \in E$

is operator-monotone on E.

F is a d-variable analogue of the Cauchy transform of a measure with support off E.

A 2-variable Löwner theorem

Let f be a real rational function of 2 variables and let E be an open rectangle in \mathbb{R}^2 on which the denominator of f does not vanish. Then f is operator-monotone on E if and only if $f \in \mathcal{P}^2$.

The proof consists in showing that f can be approximated by functions of the form $F(z) = \langle (X - z_P)^{-1}v, v \rangle_{\mathcal{M}}$ by means of a 2-variable Nevanlinna representation formula.

Our proof does not extend to dimension d = 3.

A *d*-variable Nevanlinna representation

Let $z_0 \in \Pi^d$ and let $F \in \mathcal{PA}^d$. For all but countably many automorphisms α of Π there exist a Hilbert space \mathcal{M} , a partition $P = (P^1, \ldots, P^d)$ of \mathcal{M} , a selfadjoint operator Xon \mathcal{M} , a vector $v \in \mathcal{M}$ and a real number c such that

$$\alpha \circ F \circ \alpha(z) = c + \langle z_P v, v \rangle + \langle (z - z_0)_P^* (X - z_P)^{-1} (z - z_0)_P v, v \rangle$$

for all $z \in \Pi^d$.

If v is in the domain of X then there is a simpler representation, of the form

$$\alpha \circ F \circ \alpha(z) = c + \left\langle (X - z_P)^{-1} v, v \right\rangle.$$

The Löwner class in *d* variables

Let E be an open set in \mathbb{R}^d and let $n \ge 1$. The Löwner class $\mathcal{L}_n^d(E)$ of E comprises all real-valued C^1 functions f on E such that, for every finite set $\{x_1, \ldots, x_n\}$ of distinct points in E, there exist positive $n \times n$ matrices A^1, \ldots, A^d such that

$$A_{ii}^r = \frac{\partial f}{\partial x^r}\Big|_{x_i}$$
 for $1 \le i \le n$ and $1 \le r \le d_i$

and

$$f(x_j) - f(x_i) = \sum_{r=1}^d (x_j^r - x_i^r) A_{ij}^r$$
 for $1 \le i, j \le n$.

The Löwner class $\mathcal{L}^{d}(E)$ of E is defined to be the intersection of $\mathcal{L}_{n}^{d}(E)$ over all $n \geq 1$.

Functions in $\mathcal{L}^d(E)$ are locally operator-monotone

Consider a commuting pair $S = (S^1, S^2)$ of selfadjoint $n \times n$ matrices such that $\sigma(S) \subset E$ and $\sigma(S)$ consists of simple joint eigenvalues x_1, \ldots, x_n . Let $S(t), 0 \leq t < 1$, be a C^1 curve of commuting pairs of selfadjoint matrices such that $S(0) = S, \sigma(S(t)) \subset E$ for all t and

$$\Delta \stackrel{\text{def}}{=} S'(0) \ge 0.$$

If f satisfies $f(x_j) - f(x_i) = \sum_{r=1}^{2} (x_j^r - x_i^r) A_{ij}^r$ for all i, j as in the definition of $\mathcal{L}_n^2(E)$, then a calculation shows that

$$(f \circ S)'(0) = \left[\Delta_{ij}^1 A^1(i,j) + \Delta_{ij}^2 A^2(i,j)\right] \ge 0.$$

Hence f is locally operator-monotone.

Locally operator-monotone functions are in $\mathcal{L}^d(E)$

Proof is by a separation argument.

Let E be open in \mathbb{R}^2 and let $f \in C^1(E)$ be locally operatormonotone on E. Fix $n \ge 1$ and distinct points $x_1, \ldots, x_n \in E$. Let \mathcal{G} be the set of real $n \times n$ skew-symmetric matrices Γ such that there exists a pair (A^1, A^2) of real positive $n \times n$ matrices that satisfy

$$A^{r}(i,i) = \frac{\partial f}{\partial x^{r}}(x_{i}),$$

$$\Gamma_{ij} = (x_{j}^{1} - x_{i}^{1})A^{1}(i,j) + (x_{j}^{2} - x_{i}^{2})A^{2}(i,j)$$

for all relevant r, i, j.

We claim that $\Lambda \stackrel{\text{def}}{=} [f(x_i) - f(x_j)]$ is in \mathcal{G} .

Proof that $f \in \mathcal{L}^d(E)$ continued

 \mathcal{G} is a nonempty closed convex set. Suppose that $\Lambda \notin \mathcal{G}$. By the Hahn-Banach theorem there is a real skew-symmetric matrix K and a $\delta \geq 0$ such that $\operatorname{tr}(\Gamma K) \geq -\delta$ for all $\Gamma \in K$ but $\operatorname{tr}(\Lambda K) < -\delta$.

Choose a curve S(t), $0 \le t < 1$, and apply the hypothesis of local operator-monotonicity. Construct S(t) so that $S^{r}(0) = diag\{x_{1}^{r}, \ldots, x_{n}^{r}\}$ and

$$(S^{r})'(0)_{ij} = (x_{j}^{r} - x_{i}^{r})K_{ji}$$
 for $i \neq j$.

Choose the diagonal entries of $(S^r)'(0)$ in a minimal way to ensure that $S'(0) \ge 0$.

Deduce a contradiction to the assumption $(f \circ S)'(0) \ge 0$ with the aid of R. J. Duffin's strong duality theorem for linear programmes. Conclude that $f \in \mathcal{L}^d(E)$.

The Löwner and Pick-Agler classes

 \mathcal{P}^d and $\mathcal{P}\mathcal{A}^d$ are the Cayley transforms of the Schur and Schur-Agler classes in d variables respectively.

We have $\mathcal{P}\mathcal{A}^2 = \mathcal{P}^2$ (Agler) and $\mathcal{P}\mathcal{A}^d \subsetneq \mathcal{P}^d$ for $d \ge 3$ (Varopoulos).

Let E be an open set in \mathbb{R}^d .

Denote by $\mathcal{PA}^d(E)$ the set of functions in \mathcal{PA}^d which extend analytically across E and are real on E.

Every function $f \in \mathcal{L}^{d}(E)$ extends to a function $F \in \mathcal{PA}^{d}(E)$.

A local Löwner theorem

A C^1 function f on an open set $E \subset \mathbb{R}^d$ is locally operatormonotone on E if and only if f extends to a function in $\mathcal{PA}^d(E)$.

Some questions

Are locally operator-monotone functions on a connected open set operator-monotone?

Are rational functions in d variables belonging to $\mathcal{PA}^d(E)$ operator monotone on E when E is an open rectangle in \mathbb{R}^d ?

Reference

Jim Agler, John E. McCarthy and Nicholas Young,

Operator monotone functions and Löwner functions of several variables,

Annals of Mathematics **176** (2012) 1783–1826,

Corrigendum to 'Operator monotone functions and Löwner functions of several variables',

Annals of Math. 180 (2014) 403-405. arXiv:1009.3921