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Operator-monotone functions

Let I be an open interval in R. A function f : I → R
is operator-monotone if f(A) ≤ f(B) whenever A,B are

selfadjoint operators such that A ≤ B and the spectra of

A,B are contained in I.

Examples: f(x) = −1/x is operator-monotone on (0,∞) and

on (−∞,0).

f(x) =
√
x is operator-monotone on (0,∞).

f(x) = x2 is not operator-monotone on (0,∞).



The Pick class

Let Π = {z ∈ C : Im z > 0}, the upper halfplane.

The Pick class P is the set of holomorphic functions f on
Π such that Im f ≥ 0 on Π.

Some functions in P:
√
z, −1/z, log z, tan z.

For any open interval I ⊂ R, define the Pick class P(I) of I
to be the set of restrictions to I of functions f ∈ P that are
analytic on I.

Löwner’s theorem (1934)

Let I ⊂ R be an open interval. A real-valued function on I
is operator-monotone if and only if f ∈ P(I).



Local versus global

Say that a real-valued C1 function f on a real interval I is

locally operator-monotone if, whenever S(t), 0 ≤ t < 1, is

a C1 curve of selfadjoint matrices with spectra contained in

I,

S′(0) ≥ 0 ⇒ (f ◦ S)′(0) ≥ 0.

Then f ∈ C1 is operator-monotone on I if and only if f is

locally operator-monotone on I.

Sufficiency follows from

f(B)− f(A) =
∫ 1

0

d

dt
f ((1− t)A+ tB) dt.



Operator-monotonicity in 2 variables

Let E be an open set in R2. Say that a real-valued func-

tion f on E is operator-monotone if f(A) ≤ f(B) whenever

A = (A1, A2) and B = (B1, B2) are commuting pairs of

selfadjoint operators such that A1 ≤ B1 and A2 ≤ B2 and

the joint spectra of A and B are contained in E.

Say that f ∈ C1(E) is locally operator-monotone if, when-

ever S(t) = (S1(t), S2(t)), 0 ≤ t < 1, is a C1 curve of com-

muting pairs of selfadjoint matrices with joint spectra con-

tained in E,

S′(0) ≥ 0 ⇒ (f ◦ S)′(0) exists and ≥ 0.



Local versus global in 2 variables

If f is operator-monotone on E then f is locally operator-

monotone on E (easy). Does the converse hold?

Example

A =

([
0 0
0 5

]
,

[
1 0
0 0

])
,

B =

([
4 2
2 6

]
,

[
2 2
2 4

])
.

A and B are commuting pairs of selfadjoint matrices and

A ≤ B. There is no commuting pair of selfadjoint matrices

lying strictly between A and B.

It is unclear whether locally operator-monotone functions

are operator-monotone on a general convex open set.



The Pick class in d variables

Define the d-variable Pick class Pd to be the set of holo-

morphic functions F on Πd such that ImF ≥ 0 on Πd.

The Pick-Agler class PAd is the set of functions F ∈ Pd

such that ImF (T ) ≥ 0 for every d-tuple T of commuting

operators having strictly positive imaginary parts.

For F ∈ PAd there exist positive analytic kernels A1, . . . , Ad

on Πd such that, for all z, w ∈ Πd,

F (z)− F (w) = (z1 − w̄1)A1(z, w) + · · ·+ (zd − w̄d)Ad(z, w),

and conversely.



Cauchy transforms of positive measures

Let I ⊂ R be an interval and let µ be a positive measure on

R \ I.

The Cauchy transform of µ is the function

µ̂(z)
def
=

∫
R

dµ(s)

s− z
,

defined for z /∈ R \ I.

µ̂ is locally operator monotone on I.



Proof:

Let S(t) = A+ tM + o(t) for 0 ≤ t < 1 where M ≥ 0.

1

t
(µ̂(S(t))− µ̂(S(0)) =

1

t

∫
(s− S(t))−1 − (s− S(0))−1dµ(s)

=
∫

(s− S(t))−1S(t)− S(0)

t
(s− S(0))−1dµ(s)

=
∫

(s−A− tM − o(t))−1M(s−A)−1dµ(s)

→
∫

(s−A)−1M(s−A)−1dµ(s). ≥ 0.

Thus (µ̂ ◦ S)′(0) ≥ 0. �



A class of operator-monotone functions

Let E be an open rectangle in Rd.

Let M be a Hilbert space and let P = (P1, . . . , P d) be a
tuple of orthogonal projections on M summing to 1M. For
z ∈ Cd let zP denote z1P1 + · · ·+ zdP d.

Let X be a densely defined self-adjoint operator on M such
that X − zP is invertible for z ∈ E and let v ∈ M. The
function

F (z) =
〈
(X − zP )−1v, v

〉
M

for z ∈ E
is operator-monotone on E.

F is a d-variable analogue of the Cauchy transform of a
measure with support off E.



A 2-variable Löwner theorem

Let f be a real rational function of 2 variables and let E

be an open rectangle in R2 on which the denominator of f

does not vanish. Then f is operator-monotone on E if and

only if f ∈ P2.

The proof consists in showing that f can be approximated by

functions of the form F (z) =
〈
(X − zP )−1v, v

〉
M

by means

of a 2-variable Nevanlinna representation formula.

Our proof does not extend to dimension d = 3.



A d-variable Nevanlinna representation

Let z0 ∈ Πd and let F ∈ PAd. For all but countably many

automorphisms α of Π there exist a Hilbert space M, a

partition P = (P1, . . . , P d) of M, a selfadjoint operator X

on M, a vector v ∈M and a real number c such that

α◦F ◦α(z) = c+〈zPv, v〉+
〈
(z − z0)∗P (X − zP )−1(z − z0)Pv, v

〉
for all z ∈ Πd.

If v is in the domain of X then there is a simpler represen-

tation, of the form

α ◦ F ◦ α(z) = c+
〈
(X − zP )−1v, v

〉
.



The Löwner class in d variables

Let E be an open set in Rd and let n ≥ 1. The Löwner class

Ldn(E) of E comprises all real-valued C1 functions f on E

such that, for every finite set {x1, . . . , xn} of distinct points

in E, there exist positive n×n matrices A1, . . . , Ad such that

Arii =
∂f

∂xr

∣∣∣∣
xi

for 1 ≤ i ≤ n and 1 ≤ r ≤ d,

and

f(xj)− f(xi) =
d∑

r=1

(xrj − x
r
i )A

r
ij for 1 ≤ i, j ≤ n.

The Löwner class Ld(E) of E is defined to be the intersec-

tion of Ldn(E) over all n ≥ 1.



Functions in Ld(E) are locally

operator-monotone

Consider a commuting pair S = (S1, S2) of selfadjoint n× n
matrices such that σ(S) ⊂ E and σ(S) consists of simple

joint eigenvalues x1, . . . , xn. Let S(t), 0 ≤ t < 1, be a C1

curve of commuting pairs of selfadjoint matrices such that

S(0) = S, σ(S(t)) ⊂ E for all t and

∆
def
= S′(0) ≥ 0.

If f satisfies f(xj) − f(xi) =
∑2
r=1(xrj − x

r
i )A

r
ij for all i, j as

in the definition of L2
n(E), then a calculation shows that

(f ◦ S)′(0) =
[
∆1
ijA

1(i, j) + ∆2
ijA

2(i, j)
]
≥ 0.

Hence f is locally operator-monotone.



Locally operator-monotone functions

are in Ld(E)

Proof is by a separation argument.

Let E be open in R2 and let f ∈ C1(E) be locally operator-
monotone on E. Fix n ≥ 1 and distinct points x1, . . . , xn ∈ E.
Let G be the set of real n × n skew-symmetric matrices Γ
such that there exists a pair (A1, A2) of real positive n × n
matrices that satisfy

Ar(i, i) =
∂f

∂xr
(xi),

Γij = (x1
j − x

1
i )A1(i, j) + (x2

j − x
2
i )A2(i, j)

for all relevant r, i, j.

We claim that Λ
def
=

[
f(xi)− f(xj)

]
is in G.



Proof that f ∈ Ld(E) continued

G is a nonempty closed convex set. Suppose that Λ /∈ G. By
the Hahn-Banach theorem there is a real skew-symmetric
matrix K and a δ ≥ 0 such that tr(ΓK) ≥ −δ for all Γ ∈ K
but tr(ΛK) < −δ.

Choose a curve S(t), 0 ≤ t < 1, and apply the hypothesis of
local operator-monotonicity. Construct S(t) so that Sr(0) =
diag{xr1, . . . , x

r
n} and

(Sr)′(0)ij = (xrj − x
r
i )Kji for i 6= j.

Choose the diagonal entries of (Sr)′(0) in a minimal way to
ensure that S′(0) ≥ 0.

Deduce a contradiction to the assumption (f ◦ S)′(0) ≥ 0
with the aid of R. J. Duffin’s strong duality theorem for
linear programmes. Conclude that f ∈ Ld(E).



The Löwner and Pick-Agler classes

Pd and PAd are the Cayley transforms of the Schur and

Schur-Agler classes in d variables respectively.

We have PA2 = P2 (Agler) and PAd ( Pd for d ≥ 3

(Varopoulos).

Let E be an open set in Rd.

Denote by PAd(E) the set of functions in PAd which extend

analytically across E and are real on E.

Every function f ∈ Ld(E) extends to a function F ∈ PAd(E).



A local Löwner theorem

A C1 function f on an open set E ⊂ Rd is locally operator-

monotone on E if and only if f extends to a function in

PAd(E).

Some questions

Are locally operator-monotone functions on a connected

open set operator-monotone?

Are rational functions in d variables belonging to PAd(E)

operator monotone on E when E is an open rectangle in

Rd?
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