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Prehistory

In 1980 Brezis and Gallouet established the unique solvability of
the initial-boundary value problem for the nonlinear Schrödinger
evolution equations with zero Dirichlet data on the smooth
boundary of a bounded domain in R2 or its complementary
domain. They used crucially the inequality

‖u‖L∞(Ω) ≤ C
(

1 +
(
log(1 + ‖u‖W 2,2(Ω))

)1/2
)

(1)

for every u ∈W 2,2(Ω) with ‖u‖W 1,2(Ω) = 1.

Applications of this inequality to the Euler equation can be found
in Chapter 13 of M.E. Taylor’s book on PDEs.
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The same year Brezis and Wainger extended (1) to Sobolev spaces
of higher order on Rn in the form

‖u‖L∞(Rn) ≤ C
(

1 +
(
log(1 + ‖u‖W l,q(Rn))

)(n−k)/n
)

(2)

for every function u in W l ,q(Rn) normalized by

‖u‖W k,n/k (Rn) = 1,

where k and l are integers, 1 ≤ k < l , ql > n, and k ≤ n.
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Preliminaries

Let Ω be an open domain in Rn such that mn(Ω) <∞, where mn

denotes the n-dimensional Lebesgue measure on Ω. Given
p ∈ [1,∞) and sets E ⊂ G ⊂ Ω, the capacity Cp(E ,G ) of the
condenser (E ,G ) is defined as

Cp(E ,G ) = inf
{∫

Ω
|∇u|pdx : u ∈ L1,p(Ω), u > 1 on E and

u ≤ 0 on Ω\G (up to a set of p−capacity zero)
}
.

Here L1,p(Ω) denotes the Sobolev space{
u ∈ Lp(Ω, loc) : |∇u| ∈ Lp(Ω)

}
,

with the seminorm

‖u‖L1,p(Ω) = ‖∇u‖Lp(Ω).
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Two isocapacitary functions

The first isocapacitary function

νp : [0,mn(Ω)/2]→ [0,∞]

is defined by

νp(s)=inf
{
Cp(E ,G ) : E ⊂ G ⊂ Ω, such that

mn(E ) ≥ s, mn(G ) ≤ mn(Ω)/2
}
.

Clearly, νp is non-decreasing and the isocapacitary inequality holds

νp(mn(E )) ≤ Cp(E ,G ) (3)

for every condenser (E ,G ) with mn(G ) < mn(Ω)/2.
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For example, if Ω = Rn, then

νp(s) = ω
p/n
n n1−p/n

∣∣∣p − n

p − 1

∣∣∣p−1∣∣∣mn(G )
p−n

n(p−1) − s
p−n

n(p−1)

∣∣∣1−p
for p 6= n and

νn(s) = nn−1ωn

(
log

mn(G )

s

)1−n
.
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The second isocapacitary function

πp : [0,mn(Ω)/2]→ [0,∞], p > n,

is given by

πp(s)=inf
{
Cp(E ,G ) : E is a point inG , G ⊂ Ω, andmn(G ) ≤ s

}
The function πp is clearly non-increasing and the corresponding
isocapacitary inequality is

πp(mn(G )) ≤ Cp(E ,G ). (4)

For instance, in the case Ω = Rn

πp(s) = ω
p/n
n

(p − n

p − 1

)p−1
(n s)1−p/n.
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The isoperimetric function of Ω, denoted by
λ : [0,mn(Ω)/2]→ [0,∞] is given by

λ(s) = inf
{
Hn−1(Ω∩∂E ) : E ⊂ Ω, s ≤ mn(E ) ≤ mn(Ω)/2

}
. (5)

Here Hn−1 denotes the (n − 1)-dimensional Hausdorff measure.

If Ω = Rn, then

λ(s) = ω
1/n
n (n s)(n−1)/n.
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The definition of λ leads to the relative isoperimetric inequality on
Ω which reads

λ(mn(E )) ≤ Hn−1(Ω ∩ ∂E ) (6)

for every E ⊂ Ω with mn(E ) ≤ mn(Ω)/2.

The isoperimetric function of an open subset of Rn was introduced
by Vladimir Maz’ya in 1960s. Nowadays it plays an important role
in analysis on manifolds.
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The functions νp and πp on one hand, and λ on the other hand,
are related by the inequalities

νp(s) ≥
(∫ mn(Ω)/2

s

dr

λ(r)p′

)1−p
(7)

and

πp(s) ≥
(∫ s

0

dr

λ(r)p′

)1−p
(8)

for s ∈ (0,mn(Ω)/2) with p′ = p/(p − 1), which follows along the
same lines as similar assertions in Vladimir Maz’ya’s book on
Sobolev spaces.
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Clearly,
λ(s) ≤ cn s

(n−1)/n. (9)

Moreover, if Ω is bounded and Lipschitz, then

λ(s) ≈ s(n−1)/n near s = 0. (10)

Furthermore, for any Ω,

νp(s) ≤ cn,p s
(n−p)/n for n > p, (11)

νp(s) ≤ cn,p(Ω) for n < p, (12)

and

νp(s) ≤ cn
(
log

1

s

)1−n
for n = p. (13)

These inequalities can be verified by setting appropriate test
functions in the definition of the p-capacity.
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If Ω is bounded and Lipschitz, then, by (10) and (7),

νp(s) ≈

{
s(n−p)/n if n > p,(
log 1

s

)1−n
if n = p

(14)

and

πp(s) ≈ s(n−p)/n for p > n. (15)

near s = 0.
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Main results for arbitrary Ω

Theorem
For every ε ∈ (0,mn(Ω)/2) and for all u ∈ L1,p(Ω) ∩ L1,r (Ω),
p > n, r ≥ 1,

oscΩu ≤ πp(ε)−1/p‖∇u‖Lp(Ω) + νr (ε)−1/r‖∇u‖Lr (Ω), (16)

where
oscΩu = ess sup

Ω
u − ess inf

Ω
u.
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Corollary

Let p ≥ 1, r ≥ 1. Then, for every ε ∈ (0,mn(Ω)/2) and for all
u ∈ L1,p(Ω) ∩ L1,r (Ω)

oscΩu ≤
(∫ ε

0

dµ

λ(µ)p′

)1/p′

‖∇u‖Lp(Ω)+
(∫ mn(Ω)/2

ε

dµ

λ(µ)r ′

)1/r ′

‖∇u‖Lr (Ω).

(17)

Remark. One can add the inequality p > n in Theorem since (16)
has no sense for n ≥ p.

In the case r = 1, p > n, the estimate (17) is simplified

oscΩu ≤
(∫ ε

0

dµ

λ(µ)p′

)1/p′

‖∇u‖Lp(Ω) + λ(ε)−1‖∇u‖L1(Ω). (18)
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Domains of the class Jα
A domain belongs to the class Jα, α > 0, if there is a constant Kα
such that

λ(µ) ≥ Kα µα

for µ ∈ (0,mn(Ω)/2). This class was introduced and studied in
detail by Vladimir Maz’ya (1960). In particular, any Lipschitz
domain is in J(n−1)/n.

Corollary

Let Ω ∈ Jα, let p > n, r ≥ 1 and let

1

p′
> α >

1

r ′
.

Then, for every ε ∈ (0,mn(Ω)/2) and for all u ∈ L1,p(Ω)

oscΩu ≤ K−1
α

(
(1− αp′)−1/p′ε−α+1/p′‖∇u‖Lp(Ω)

+ (αr ′ − 1)−1/r ′ε−α+1/r ′‖∇u‖Lr (Ω)

)
. (19)
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Taking the minimum value of the right-hand side in ε, we arrive at
the multiplicative inequality

oscΩu ≤ cα,p,r K−1
α ‖∇u‖

γ
Lp(Ω)‖∇u‖

1−γ
Lr (Ω) (20)

where Ω is a domain of the class Jα with 1/p′ > α > 1/r ′, p > n,
r ≥ 1, and

γ =
α− 1/r ′

1/r − 1/p
.
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The case Ω ∈ J1/r ′

We turn to the critical case when Ω belongs to the class J1/r ′ .

Corollary

Let p > n, p > r ≥ 1 and let Ω ∈ J1/r ′ . Then, for every
ε ∈ (0,mn(Ω)/2) and for all u ∈ L1,p(Ω),

oscΩu ≤ K−1
1/r ′

(((p − 1)r

p − r

)1/p′

ε(p−r)/pr‖∇u‖Lp(Ω)

+
(

log
mn(Ω)

2ε

)1/r ′

‖∇u‖Lr (Ω)

)
. (21)
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Without taking into account the values of the constants, we can
write

oscΩu ≤ c
(
ε(p−r)/pr‖∇u‖Lp(Ω) +

(
log

mn(Ω)

2ε

)1/r ′

‖∇u‖Lr (Ω)

)
,

where ε ∈ (0,mn(Ω)/2) and hence

oscΩu ≤ c1

(
1 +

∣∣log(c2‖∇u‖Lp(Ω))
∣∣)1/r ′

, (22)

provided ‖∇u‖Lr (Ω) = 1. Recall that p > n, p > r ≥ 1, and
Ω ∈ J1/r ′ .

In particular, if Ω is a bounded Lipschitz domain, then r = n and
(22) becomes

oscΩu ≤ c1

(
1 +

∣∣log(c2‖∇u‖Lp(Ω))
∣∣)(n−1)/n

, (23)

with ‖∇u‖Ln(Ω) = 1 (Brezis-Gallouet inequality).
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Higher order Sobolev spaces

Theorem
Let Ω ∈ Jα, α < 1, and let u denote an arbitrary function in
W l ,q(Ω) with integer l and q ≥ 1. Further let r = 1/(1− α) and

l(1− α) < 1/q. (24)

If
‖u‖W 1,r (Ω) = 1,

then
‖u‖L∞(Ω) ≤ Cα,q,l

(
1 +

(
log(1 + ‖u‖W l,q(Ω))

)α)
. (25)
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Whirlpool domain

Example 1. Let Ω be the domain

{x = (x ′, xn) : |x ′| < ϕ(xn), 0 < xn < 1}, (26)

where ϕ is a continuously differentiable convex function on [0, 1],
ϕ(0) = 0. The area minimizing function satisfies

c [ϕ(t)]n−1 ≤ λ
(
vn−1

∫ t

0
[ϕ(τ)]n−1dτ

)
≤ [ϕ(t)]n−1 (27)

for sufficiently small t. (V. Maz’ya, Sobolev spaces). Here vn−1 is
the volume of the unit ball in Rn−1.
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Now the inequality (17) implies

oscΩu ≤ c1

(∫ δ

0
ϕ(t)

n−1
p−1 dt

)1/p′

‖∇u‖Lp(Ω)

+ c2

(∫ 1

δ
ϕ(t)

n−1
r−1 dt

)1/r ′

‖∇u‖Lr (Ω)

)
(28)

for sufficiently small δ > 0.
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For the power β-cusp

Ω =
{
x :

n−1∑
i=1

x2
i < x2β

n , 0 < xn < 1
}
, β > 1, (29)

one has by (27)

c1 s
α ≤ λ(s) ≤ c2 s

α, α =
β(n − 1)

β(n − 1) + 1
.

For this particular case (28) takes the form

oscΩu ≤ c
(
δ

(1+β(n−1)
p−1

) p−1
p ‖∇u‖Lp(Ω) + δ(1+β(n−1)

r−1
) r−1

r ‖∇u‖Lr (Ω)

)
,

where p − 1 + β(n − 1) > 0 and r − 1 + β(n − 1) < 0.
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In the critical case r − 1 + β(n − 1) = 0 one has for small δ > 0

oscΩu ≤ c
(
δ

(1+β(n−1)
p−1

) p−1
p ‖∇u‖Lp(Ω) +

(
log δ−1

)1/r ′‖∇u‖Lr (Ω)

)
.
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Minimizing the right-hand side in the preceding inequality, we
arrive at inequality of Brezis-Wainger type for the β-cusp.

Theorem
Let Ω be the β-cusp (29) and let u denote an arbitrary function in
W l ,q(Ω), where l is integer, q ≥ 1, and

ql > β(n − 1).

If
‖u‖W 1,1+β(n−1)(Ω) = 1,

then
‖u‖L∞(Ω) ≤ Cβ,q,l

(
1 +

(
log(1 + ‖u‖W l,q(Ω))

)α)
(30)

with α = β(n − 1)/[1 + β(n − 1)].
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Remark. We can show that the power α of the logarithm in (30) is
the best possible by choosing

u(x) =
log 1

xn+δ(
log 1

δ

)1/[1+β(n−1)]

with a small δ > 0.
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λ-John domains

We recall that a bounded domain Ω ⊂ Rn is λ-John, λ ≥ 1, if
there is a constant C > 0 and a distinguished point x0 ∈ Ω such
that every x ∈ Ω can be joined to x0 by a rectifiable arc γ ⊂ Ω
along which

dist(y , ∂Ω) ≥ C |γ(x , y)|λ, y ∈ γ,

where |γ(x , y)| is the length of the portion of γ joining x to y .

Clearly, the class of λ-John domains increases with λ.
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Kilpeläinen and Malý showed that every λ-John domain belongs to
the class Jλ(n−1)/n.

Our result implies that inequality

‖u‖L∞(Ω) ≤ Cα,q,l

(
1 +

(
log(1 + ‖u‖W l,q(Ω))

)α)
holds with α = λ(n − 1)/n for every λ-John domain.
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