Sidon sets in bounded orthonormal systems

Gilles Pisier Texas A&M University and IMJ-UPMC Euler Mathematical Institute, June 2016 $\Lambda \subset {\rm I\!\!Z}$ is Sidon if

$$\sum_{n\in\Lambda}a_ne^{int}\in C(\mathbf{T})\Rightarrow\sum_{n\in\Lambda}|a_n|<\infty$$

 $\Lambda \subset {\rm I\!\!Z}$ is randomly Sidon if

$$\sum_{n\in\Lambda}\pm a_n e^{int}\in C(\mathsf{T}) \ a.s.\Rightarrow \sum_{n\in\Lambda}|a_n|<\infty$$

 $\Lambda \subset {\rm I\!\!Z}$ is subGaussian if

$$\sum_{n\in\Lambda}|a_n|^2<\infty\Rightarrow\int\exp|\sum_{n\in\Lambda}a_ne^{int}|^2<\infty.$$

Obviously Sidon \Rightarrow randomly Sidon Rudin (1961): Sidon \Rightarrow subGaussian Rider (1975) : Sidon \Leftrightarrow randomly Sidon P (1978) : Sidon \Leftrightarrow subGaussian

Results hold more generally for any subset $\Lambda \subset \widehat{G}$ when G is any compact Abelian group Obviously Sidon \Rightarrow randomly Sidon Rudin (1961): Sidon \Rightarrow subGaussian Rider (1975) : Sidon \Leftrightarrow randomly Sidon (Note: This refines Drury's celebrated 1970 union Theorem) P (1978) : Sidon \Leftrightarrow subGaussian

Results hold more generally for any subset $\Lambda \subset \widehat{G}$ when G is any compact Abelian group

Examples

Hadamard lacunary sequences

$$n_1 < n_2 < \cdots < n_k, \cdots$$

such that

$$\inf_k \frac{n_{k+1}}{n_k} > 1$$

Explicit example

$$n_k = 2^k$$

Basic Example: Quasi-independent sets Λ is quasi-independent if all the sums

$$\{\sum_{n\in A}n\mid A\subset \Lambda, |A|<\infty\}$$

are distinct numbers

 $\mathsf{quasi-independent} \Rightarrow \mathsf{Sidon}$

P. (1983) A set Λ is **Sidon** IFF $\exists \delta > 0$ such that $\forall A \subset \Lambda$ ($|A| < \infty$) $\exists B \subset A$ quasi-independent with $|B| \ge \delta |A|$. Proof uses random Fourier series and the metric entropy condition

Most Delicate part is the IF part

Bourgain (1985) gave a different proof and proved the following strengthening:

A is **Sidon** IFF $\exists \delta > 0$

such that for any probability Q on $\Lambda \exists B \subset \Lambda$ quasi-independent such that

$$Q(B) \geq \delta$$

Most Delicate part is the ONLY IF part

Is every Sidon set a finite union of quasi-independent sets ?

This is reduced to a purely combinatorial problem whether for a finite set $\boldsymbol{\Lambda}$

$$\begin{cases} \forall A \subset \Lambda \ (|A| < \infty) \\ \exists B \subset A \text{ quasi-independent } with \ |B| \ge \delta |A| \end{cases}$$

implies

$$\exists k = k(\delta) \quad \Lambda = \cup_1^k B_k \quad ext{ with } B_k ext{ quasi-independent}$$

Paul Erdos

(met in 1983 in Warsaw)

got interested in the problem and worked on it as well as on variants of the problem in **graph theory**:

cf.

P. Erdös, J. Nesetril and V. Rödl,

On Pisier type problems and results, in Mathematics of Ramsey Theory, Algorithms and Combinatorics, Vol. 5, Springer 1990)

P. Erdös, J. Nesetril and V. Rödl,

A remark on Pisier type theorems, (1996)

...but the problem remains open !

Main known cases

 $G = (\mathbb{Z}/p\mathbb{Z})^{\mathbb{N}}$ Malliavin-Malliavin, 1967 [using Horn's theorem 1954]

for p prime (for example: $p = 2 \rightarrow$ "Walsh functions" $G = \{-1, 1\}^{\mathbb{N}}$) Extended by Bourgain (1983) to $p = p_1 \cdots p_n$ with p_k distinct primes Bourgain and Lewko (arxiv 2015) wondered whether a group environment is needed for all the preceding

Question

What remains valid if $\Lambda \subset \widehat{G}$ is replaced by a *uniformly bounded* orthonormal system ?

Let $\Lambda = \{\varphi_n\} \subset L_{\infty}(T, m)$ orthonormal in $L_2(T, m)$ ((T, m) any probability space)

 (i) We say that (φ_n) is Sidon with constant C if for any n and any complex sequence (a_k) we have

$$\sum_{1}^{n} |a_{k}| \leq C \| \sum_{1}^{n} a_{k} \varphi_{k} \|_{\infty}.$$

 (ii) We say that (φ_n) is randomly Sidon with constant C if for any n and any complex sequence (a_k) we have

$$\sum_{1}^{n} |a_{k}| \leq C \mathsf{Average}_{\pm 1} \| \sum_{1}^{n} \pm a_{k} \varphi_{k} \|_{\infty},$$

(iii) Let k ≥ 1. We say that (φ_n) is ⊗^k-Sidon with constant C if the system {φ_n(t₁) ··· φ_n(t_k)} (or equivalently {φ_n^{⊗k}}) is Sidon with constant C in L_∞(T^k, m^{⊗k}).
Now assume merely that {φ_n} ⊂ L₂(T, m).
(iv) We say that (φ_n) is subGaussian with constant C (or C-subGaussian) if for any n and any complex sequence (a_k) we have

$$\|\sum_{1}^{n}a_{k}\varphi_{k}\|_{\psi_{2}}\leq C(\sum|a_{k}|^{2})^{1/2}.$$

Here

$$\psi_2(x) = \exp x^2 - 1$$

and $||f||_{\psi_2}$ is the norm in associated Orlicz space **Again:** We say that $\{\varphi_n\} \subset L_2(T, m)$ is subGaussian with constant *C* (or *C*-subGaussian) if for any *n* and any complex sequence (a_k) we have

$$\|\sum_{1}^{n}a_{k}\varphi_{k}\|_{\psi_{2}}\leq C(\sum|a_{k}|^{2})^{1/2}.$$

Equivalently, assuming w.l.o.g. $\int \varphi_k = 0, \forall k \exists C \text{ such that } \forall (a_k)$

$$\int \exp Re(\sum_{1}^{n} a_k \varphi_k) \leq \exp C^2 \sum |a_k|^2$$

Important remark: Standard i.i.d. (real or complex) Gaussian random variables are subGaussian (Fundamental example !)

Easy Observation : Sidon \Rightarrow subGaussian

By a much more delicate example Bourgain and Lewko proved:

subGaussian eq Sidon

However, they proved

Theorem

$$subGaussian \Rightarrow \otimes^5 - Sidon$$

Recall \otimes^5 – Sidon means

$$\sum_1^n |a_k| \leq C \|\sum_1^n a_k arphi_k(t_1) \cdots arphi_k(t_5)\|_{L_\infty(T^5)}.$$

This generalizes my 1978 result that subGaussian implies Sidon for characters $(\varphi_k(t_1) \cdots \varphi_k(t_5) = \varphi_k(t_1 \cdots t_5) !)$ They asked whether 5 can be replaced by 2 which would be optimal Indeed, it is so.

Theorem

For bounded orthonormal systems

$$subGaussian \Rightarrow \otimes^2 - Sidon$$

Recall \otimes^2 – Sidon means $\sum_1^n |a_k| \le C \|\sum_1^n a_k \varphi_k(t_1) \varphi_k(t_2)\|_{L_{\infty}(T^2)}.$

Actually, we have more generally:

Theorem (1)

Let $(\psi_n^1), (\psi_n^2)$ be systems biorthogonal respectively to $(\varphi_n^1), (\varphi_n^2)$ on probability spaces $(T_1, m_1), (T_2, m_2)$ resp. and uniformly bounded respectively by C'_1, C'_2 , If $(\varphi_n^1), (\varphi_n^2)$ are subGaussian with constants C_1, C_2 then

$$\sum |a_n| \leq \alpha \operatorname{ess\,sup}_{(t_1,t_2) \in T_1 \times T_2} |\sum a_n \psi_n^1(t_1) \psi_n^2(t_2)|,$$

where α is a constant depending only on C_1, C_2, C'_1, C'_2 .

To illustrate by a concrete (but trivial) example: take $\varphi_n^1 = \varphi_n^2 = g_n$ and $\psi_n^1 = \psi_n^2 = \text{sign}(g_n)$

The key new ingredient is a corollary of a powerful result due to **Talagrand Acta (1985)** (combined with a soft Hahn-Banach argument)

Let (g_n) be an i.i.d. sequence of standard (real or complex) Gaussian random variables

Theorem

Let (φ_n) be C-subGaussian in $L_1(T, m)$. Then $\exists T : L_1(\Omega, \mathbb{P}) \to L_1(T, m)$ with $||T|| \leq KC$ (K a numerical constant) such that

$$\forall n \quad T(g_n) = \varphi_n$$

Let $T \in L_1(m_1) \otimes L_1(m_2)$ (algebraic \otimes) say $T = \sum x_j \otimes y_j$ then the

projective and injective tensor product norm denoted respectively by $\|\cdot\|_\wedge$ and $\|\cdot\|_\vee$ are very explicitly described by

$$||T||_{\wedge} = \int |\sum x_j(t_1)y_j(t_2)|dm_1(t_1)dm_2(t_2)|$$

 $\|T\|_{\vee} = \sup\{|\sum \langle x_j, \psi_1 \rangle \langle y_j, \psi_2 \rangle| \mid \|\psi_1\|_{\infty} \leq 1, \|\psi_2\|_{\infty}\}.$

Theorem

Let (φ_n^1) and (φ_n^2) $(1 \le n \le N)$ are subGaussian with constants C_1, C_2 . Then for any $0 < \delta < 1$ there is a decomposition in $L_1(m_1) \otimes L_1(m_2)$ of the form

$$\sum_{1}^{N}\varphi_{n}^{1}\otimes\varphi_{n}^{2}=t+r$$

satisfying

 $\|t\|_{\wedge} \leq w(\delta)$ $\|r\|_{\vee} \leq \delta,$

where $w(\delta)$ depends only on δ and C_1, C_2 . Moreover

$$w(\delta) = O(\log((C_1C_2)/\delta))$$

Proof reduces to the case $\varphi_n^1 = \varphi_n^2 = g_n$

Proof of Theorem (1)

Let
$$f = \sum_{n \neq n} a_n \psi_n^1(t_1) \psi_n^2(t_2)$$

 $|a_n| = s_n a_n$

Note: (φ_n) subGaussian \Rightarrow $(s_n\varphi_n)$ subGaussian (same constant)

$$S = \sum_{1}^{N} s_n \varphi_n^1 \otimes \varphi_n^2 = t + r$$

 $\langle f, S \rangle = \sum |a_n|$

Therefore

$$\sum |a_n| = \langle f, t+r \rangle \le |\langle f, t \rangle| + |\langle f, r \rangle|$$

 $\leq w(\delta) \|f\|_{\infty} + \sum |a_n| |\langle \psi_n^1 \otimes \psi_n^2, r \rangle| \leq w(\delta) \|f\|_{\infty} + (\delta C_1' C_2') \sum |a_n|$

and hence

$$\sum |a_n| \le (1 - \delta C_1' C_2')^{-1} w(\delta) \|f\|_{\infty}$$

About Randomly Sidon

Bourgain and Lewko noticed that Slepian's classical comparison Lemma for Gaussian processes implies that randomly \otimes^k -Sidon and randomly Sidon are the same property, not implying Sidon. However, we could prove that this implies \otimes^4 -Sidon:

Theorem (2)

Let (φ_n, ψ_n) be biorthogonal systems both bounded in L_{∞} . The following are equivalent:

- (i) The system (ψ_n) is randomly Sidon.
- (ii) The system (ψ_n) is \otimes^4 -Sidon.
- (iii) The system (ψ_n) is \otimes^k -Sidon for all $k \ge 4$.
- (iv) The system (ψ_n) is \otimes^k -Sidon for some $k \ge 4$.

This generalizes Rider's result that randomly Sidon implies Sidon for characters

Open question: What about k = 2 or k = 3?

Non-commutative case

G compact non-commutative group \widehat{G} the set of distinct irreps, $d_{\pi} = \dim(H_{\pi})$ $\Lambda \subset \widehat{G}$ is called Sidon if $\exists C$ such that for any finitely supported family (a_{π}) with $a_{\pi} \in M_{d_{\pi}}$ $(\pi \in \Lambda)$ we have

$$\sum_{\pi\in\Lambda} d_{\pi}\mathrm{tr}|a_{\pi}| \leq C \|\sum_{\pi\in\Lambda} d_{\pi}\mathrm{tr}(\pi a_{\pi})\|_{\infty}.$$

 $\Lambda \subset \widehat{G}$ is called randomly Sidon if $\exists C$ such that for any finitely supported family (a_{π}) with $a_{\pi} \in M_{d_{\pi}}$ $(\pi \in \Lambda)$ we have

$$\sum_{\pi\in\Lambda} d_{\pi} \mathrm{tr}|a_{\pi}| \leq C \mathbb{E} \|\sum_{\pi\in\Lambda} d_{\pi} \mathrm{tr}(\varepsilon_{\pi}\pi a_{\pi})\|_{\infty}$$

where (ε_{π}) are an independent family such that each ε_{π} is uniformly distributed over $O(d_{\pi})$.

Important Remark (easy proof) Equivalent definitions:

- unitary matrices (u_{π}) uniformly distributed over $U(d_{\pi})$
- Gaussian random matrices (g_{π}) normalized so that $\mathbb{E}||g_{\pi}|| \approx 2$ $(\{d_{\pi}^{1/2}g_{\pi} \mid \pi \in \Lambda, 1 \leq i, j \leq d_{\pi}\}$ forms a standard Gaussian (real or complex) i.i.d. family

Fundamental example

$$G = \prod_{n \ge 1} U(d_n)$$
$$\Lambda = \{\pi_n \mid n \ge 1\}$$

 $\pi_n: \ G
ightarrow U(d_n)$ *n*-th coordinate

$$C=1: \sum_{n\geq 1} d_n \operatorname{tr} |a_n| = \|\sum_{n\geq 1} d_n \operatorname{tr} (\pi_n a_n)\|_{\infty}.$$

Rider (1975) extended all results previously mentioned to arbitrary compact groups

Note however that the details of his proof that randomly Sidon implies Sidon (solving the non-commutative union problem) never appeared

I plan to remedy this on arxiv soon

Assume given a sequence of finite dimensions d_n .

For each *n* let (φ_n) be a random matrix of size $d_n \times d_n$ on (T, m). We call this a "matricial system".

Let g_n be an independent sequence of random $d_n \times d_n$ -matrices, such that $\{d_n^{1/2}g_n(i,j) \mid 1 \le i, j \le d_n\}$ are i.i.d. normalized \mathbb{C} -valued Gaussian random variables. Note $\|g_n(i,j)\|_2 = d_n^{-1/2}$.

The **subGaussian condition** becomes: for any N and $y_n \in M_{d_n}$ $(n \leq N)$ we have

$$\|\sum d_n \mathrm{tr}(y_n \varphi_n)\|_{\psi_2} \le C (\sum d_n \mathrm{tr}|y_n|^2)^{1/2} = \|\sum d_n \mathrm{tr}(y_n g_n)\|_2.$$
(1)

In other words, $\{d_n^{1/2}\varphi_n(i,j) \mid n \ge 1, 1 \le i, j \le d_n\}$ is a subGaussian system of functions. The **uniform boundedness condition** becomes

$$\exists C' \forall n \quad \|\varphi_n\|_{L_{\infty}(M_{d_n})} \leq C'.$$
(2)

As for the orthonormality condition it becomes

$$\int \varphi_n(i,j)\overline{\varphi_{n'}(k,\ell)} = d_n^{-1}\delta_{n,n'}\delta_{i,k}\delta_{j,\ell}.$$
(3)

In other words, $\{d_n^{1/2}\varphi_n(i,j) \mid n \ge 1, 1 \le i, j \le d_n\}$ is an orthonormal system.

The definition of \otimes^k -**Sidon** it now means that the family of *matrix* products $(\varphi_n(t_1) \cdots \varphi_n(t_k))$ is Sidon on $(T, m)^{\otimes^k}$

Theorem (3)

Theorems (1) and (2) are still valid with the corresponding assumptions:

- subGaussian implies ⊗²-Sidon
- randomly Sidon implies ⊗⁴-Sidon

Example of application

Let $\chi \ge 1$ be a constant. Let T_n be the set of $n \times n$ -matrices $a = [a_{ij}]$ with $a_{ij} = \pm 1/\sqrt{n}$. Let

$$A_n^{\chi} = \{ a \in T_n \mid \|a\| \leq \chi \}.$$

This set includes the famous Hadamard matrices. We have then

Corollary

There is a numerical $\chi \ge 1$ such that for some C we have

$$\forall n \geq 1 \ \forall x \in M_n \quad \mathrm{tr}|x| \leq C \sup_{a',a'' \in A_n^{\mathbb{X}}} |\mathrm{tr}(xa'a'')|.$$

Equivalently, denoting $A_n^{\chi}A_n^{\chi} = \{a'a'' \mid a', a'' \in A_n^{\chi}\}$ its absolutely convex hull satisfies

$$(\chi)^2$$
absconv $[A^\chi_n A^\chi_n] \subset B_{\mathcal{M}_n} \subset \mathcal{C}$ absconv $[A^\chi_n A^\chi_n]$

Curiously, even the case when $|\Lambda|=1$ (only a single irrep) is interesting

The simplest (and prototypical) example of this situation with $|\Lambda_n| = 1$ is the case when $G_n = U(n)$ the group of unitary $n \times n$ -matrices, and Λ_n is the singleton formed of the irreducible representation (in short irrep) defining U(n) as acting on \mathbb{C}^n . Sets of this kind and various generalizations were tackled early on by Rider under the name "local lacunary sets"

The next Theorem of course is significant only if $\dim(\pi_n) \to \infty$

Theorem (Characterizing SubGaussian characters)

Let G_n be compact groups, let π_n ∈ G_n be nontrivial irreps, let χ_n = χ_{π_n} as well as d_n = d_{π_n}. The following are equivalent.
(i) ∃C such that the singletons {π_n} ⊂ G_n are Sidon with constant C, i.e. we have

$$\forall n \; \forall a \in M_{d_n} \quad \mathrm{tr}|a| \leq C \sup_{g \in G} |\mathrm{tr}(a\pi_n(g))|.$$

(ii) $\exists C \text{ such that } \forall n \quad ||\chi_n||_{\psi_2} \leq C.$ (iii) For each (or some) $0 < \delta < 1$ there is $0 < \theta < 1$ such that

$$\forall n \quad m_{G_n}\{Re(\chi_n) > \delta d_n\} \leq e\theta^{d_n^2}.$$

(iv) $\exists C \text{ such that}$ $\forall n \quad d_n \leq C \int_{U(d_n)} \sup_{g \in G_n} |\operatorname{tr}(u\pi_n(g))| m_{U(d_n)}(du).$ Although I never had a concrete example, I believed naively for many years that this Theorem could be applied to finite groups. To my surprise, Emmanuel Breuillard showed me that it is not so. By a Theorem of Jordan, any finite group $\Gamma \subset U(d)$ (Breuillard extended this to amenable subgroups of U(d)) has an Abelian subgroup of index at most (d + 1)! This implies for any representation $\pi : G \to U(d)$ with finite range

$$\int_{U(d)} \sup_{g \in G} |\mathrm{tr}(u\pi(g))| m_{U(d)}(du) \le c(d\log(d))^{1/2} << d$$

and also

$$\|\chi_{\pi}\|_{\psi_2} \ge c\sqrt{d/\log(d)} >> 1.$$