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S. Petermichl (Université Paul Sabatier) Sharp Lp estimates St.Petersburg 1 / 36



history

Basic definitions, classical case

The Hilbert transform on the real line is defined by

Hf (x) = p.v .
1

π

∫
R
f (y)

1

x − y
dy

which is

Ĥf (ξ) = −i ξ
|ξ|

f̂ (ξ)

and
H ◦
√
−∆ = ∂.

In RN the Riesz transforms are

R i ◦
√
−∆ = ∂i
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history

Basic definitions, discrete case

In this lecture, we are interested in Riesz transforms on products of
discrete abelian groups of a single generator 1, for example ZN .

Discrete first derivatives:

∂i+f (n) = f (n + 1i )− f (n)

and
∂i−f (n) = f (n)− f (n − 1i )

Discrete Laplace:

∆f (n) =
N∑
i=1

∂ i+∂
i
−f (n) =

N∑
i=1

[f (n + 1i )− 2f (n) + f (n − 1i )]

There are two choices of Riesz transforms for each direction

R i
± ◦
√
−∆ = ∂ i±
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history

Second order Riesz transforms

The N second order discrete Riesz transforms are

R2
i = R i

+R
i
−

We are concerned with operators of the form

R2
α =

N∑
i=1

αiR
2
i

where |αi | 6 1.
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history

Classical Case

In the classical situation, R2, this includes

R2
1 − R2

2 = ReB

where B is the Beurling Ahlfors operator. The following estimate is due to
Nazarov and Volberg:

‖ReB‖Lp(R2)→Lp(R2) 6 p∗ − 1

Here p∗ − 1 = max
{
p − 1, 1

p−1

}
Sharpness is due to Geiss, Montgomery-Smith, Saksman.
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Our contribution

On discrete Abelian groups

Theorem (Domelevo, P. (2014))

If ‖α‖∞ 6 1 and G = Z or G = Z/mZ then

‖R2
α‖Lp(GN)→Lp(GN) 6 p∗ − 1 = max

{
p − 1,

1

p − 1

}
The estimate is sharp for products of infinite groups and sharp for
products of finite groups if one requires a uniform estimate that holds for
all orders m.

In the real valued case and when 0 6 a 6 αi 6 b 6 1∀i the estimate can
be improved to the so called Choi constants. They are better than p∗ − 1
but less explicit. This case includes all single second order Riesz transforms
R2
i . Here a = 0 and b = 1.
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Our contribution

Discretizations and Finite Difference Schemes

Z is a special and very regular discretization of R while Z/mZ discretizes
T.

In the finite difference scheme with the mesh and derivatives defined as
above, the discrete Riesz transforms can be regarded as a finite difference
approximation of classical Riesz transforms.

By considering finer meshes, we see that our estimates recover the
Nazarov-Volberg estimate (but not vice versa) and that we inherit
sharpness from that of the respective continuous settings.
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Sharp Lp estimates

What we know: Sharp Lpestimates.

Two prototypes, two functions:

- periodic Hilbert transform

- differentially subordinate martingales

In both cases, the estimates are obtained by the discovery of a special
function of several variables that is characteristic in some sense for the
problem.
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Sharp Lp estimates

Hilbert transform (Pichorides)

Theorem (Pichorides)

Let f be 2π periodic and f̃ its conjugate function. Then the best
constants in Riesz’s theorem are

‖f̃ ‖p 6 Ap‖f ‖p

where Ap = tan
(
π
2p

)
when 1 < p 6 2 and cot

(
π
2p

)
when p > 2.
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Sharp Lp estimates

Essén’s proof.

Let f be harmonic on the disk and f̃ its conjugate function with f̃ (0) = 0.
So that F = f + i f̃ analytic.
Suppose 1 < p < 2 and we have a function G : C→ R with the following
properties:

G (x) 6 0 for x ∈ R
G (z) superharmonic in C

G (z) > |z |p − cos−p
(
π
2p

)
|x |p for z ∈ C where x = Rez

then plug F (re iϕ) into G and integrate over ϕ:

|F (re iϕ)|p 6 cos−p
(
π
2p

)
|f (re iϕ)|p + G (F (re iϕ))

It is then easy to pass to Pichorides estimate.
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Sharp Lp estimates

Essén’s function

G (z) =

|z |p − cos−p
(
π
2p

)
|x |p when π

2p < | arg(z)| < π − π
2p

− tan
(
π
2p

)
|z |p cos(p arg(z)) when | arg(z)| < π

2p

− tan
(
π
2p

)
|z |p cos(p(π − | arg(z)|)) when 0 6 π − | arg(z)| < π

2p
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Elements of our proof

Burkholder’s Estimate

Theorem (Burkholder)

(Ω,F,P) probability space with filtration F = (Fn)n∈N. X and Y complex
valued martingales with differential subordination:

|Y0(ω)| 6 |X0(ω)|

|Yn(ω)− Yn−1(ω)| 6 |Xn(ω)− Xn−1(ω)|

a.s. in Ω. Then

‖Y ‖p 6 (p∗ − 1)‖X‖p, 1 < p <∞

S. Petermichl (Université Paul Sabatier) Sharp Lp estimates St.Petersburg 12 / 36



Elements of our proof

Dyadic martingale in [0, 1]

Dyadic system

D = {[l2−k , (l + 1)2−k ] : 0 6 l < 2k , k > 0}

{hI : I ∈ D} is an orthonormal basis in L2([0, 1]) and so

f (x) =

∫ 1

0
f (t)dt +

∑
I∈D

(f , hI )hI (x)

When taking only ‘large’ intervals, obtain approximations of f .
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Elements of our proof

Burkholder’s estimate: weak form

For a fixed f : [0, 1]→ C and dyadic system hI : I ∈ D with sequence
|σI | = 1 build a pair of differentially subordinate martingales

X0 =

∫ 1

0
f (t)dt and Xn =

∑
I∈D,|I |>2−n

(f , hI )hI

Y0 =

∫ 1

0
f (t)dt and Yn =

∑
I∈D,|I |>2−n

σI (f , hI )hI

Differential subordination: Y0 = X0 and |Yn − Yn−1| = |Xn − Xn−1|
pointwise.
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Elements of our proof

Burkholder’s estimate: weak form

With Tσf =
∑

I∈D σI (f , hI )hI , Burkholder’s theorem asserts that

sup
σ
‖Tσ‖p→p 6 p∗ − 1

In its weak form, this becomes

sup
σ
|(Tσf , g)| 6 (p∗ − 1)‖f ‖p‖g‖q

or by choosing the worst σ:∑
I∈D
|(f , hI )(g , hI )| 6 (p∗ − 1)‖f ‖p‖g‖q
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Elements of our proof

Bellman function

Burkholder’s theorem in its weak form∑
I∈D
|(f , hI )(g , hI )| 6 (p∗ − 1)‖f ‖p‖g‖q

takes the localized form

1

4|J|
∑

I∈D,I⊆J
|I ||∆I f ||∆Ig | 6 (p∗ − 1)〈|f |p〉1/pJ 〈|g |

q〉1/qJ

where 〈h〉I = 1
|I |
∫
I h(t)dt mean value of h over I and ∆Ih = 〈h〉I+ − 〈h〉I−

the dyadic derivative.
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Elements of our proof

Bellman function

The estimate

1

|J|
∑

I∈D,I⊆J

1

4
|I ||∆I f ||∆Ig | 6 (p∗ − 1)〈|f |p〉1/pJ 〈|g |

q〉1/qJ

is a statement about relations of

f = 〈f 〉I , g = 〈g〉I ,F = 〈|f |p〉I ,G = 〈|g |q〉I

Clearly |f|p 6 F and |g|q 6 G.
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Elements of our proof

Bellman function

By setting up a natural extremal problem, Burkholder’s estimate implies
the existence of a function B defined on the domain

Dp = {(F,G, f, g) ∈ R× R× C× C : |f|p 6 F, |g|q 6 G}

with range
0 6 B(F,G, f, g) 6 (p∗ − 1)F1/pG1/q

and convexity
−d2B(F,G, f, g) > 2|df||dg|
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Elements of our proof

Bellman function

Midpoint concavity is equivalent to concavity.

−d2B(x , y) ≥ 2|dx ||dy |

iff

B(x , y)− 1

2
B(x+, y+)− 1

2
B(x−, y−) ≥ 1

4
|∆x ||∆y |
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Elements of our proof

Bellman function

Infact, any such function proves the dyadic version of Burkholder’s
theorem.

|J|(p∗ − 1)〈|f |p〉1/pJ 〈|g |
q〉1/qJ > |J|B(vJ) > |J+|B(vJ+) + |J−|B(vJ−)

+
1

4
|J||∆J f ||∆Jg |

> . . .

>
∑

I⊂J,|I |=2−n|J|

|I |B(vI )

+
1

4

∑
I⊂J,|I |>2−n|J|

|I ||∆I f ||∆Ig |
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Elements of our proof

Dyadic heat extension

2〈f 〉I = 〈f 〉I+ + 〈f 〉I−
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Elements of our proof

Fourier Analysis

̂: (f : ZN → C)→ (f̂ : TN → C)

f (~n) 7→ f̂ (~ξ) =
∑
~n∈ZN

f (~n)e−2πi~n·~ξ

∂j±,∆,R
i
± are multiplier operators.

For example

R̂2
j = R̂ j

+R
j
− =

−4 sin2(πξj)

4
∑

i sin2(πξi )
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Elements of our proof

Heat Extension

f : ZN → C. Its heat extension is f̃ : ZN × [0,∞)→ C with

f̃ (t, ~n) = et∆f (~n)

Using basic Fourier analysis, semigroups or integration by parts, one
derives the formula: if ĝ(0) = 0 then

(f ,R2
j g) = −2

∫ ∞
0

∑
ZN

∂j+f̃ (~n, t)∂j+g̃(~n, t)dt

and observes its similarity to the model

(Tσf , g) =
∑
I∈D

σI (f , hI )(g , hI ) = 1
4

∑
I∈D

σI (〈f 〉I+ − 〈f 〉I−)(〈g〉I+ − 〈g〉I−).

|I | ∼ t dyadic heat extension vs heat extension, space derivatives
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Elements of our proof

Bellman transference

Instead of
b(I ) = B(〈|f |p〉I , 〈f 〉I , 〈|g |q〉I , 〈g〉I )

evaluate
b(~n, t) = B(|̃f |p, f̃ , |̃g |q, g̃)(~n, t)

b(I )− 1
2b(I+)− 1

2b(I+) estimate becomes (∂t −∆)b.

For classical heat equations, say in (x , t) this transference works perfectly:

(∂t −∆)b = (−d2B(ṽ)ṽ ′x , ṽ
′
x)

because ṽ solves the heat equation.
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Elements of our proof

Bellman transference

In the discrete case: lack of chainrule.

Very easy way out:
−d2B(v) ≥ 2|dx ||dy |

where the right hand side is independent of the location v of evaluation of
Hessian. The integral form of the remainder in Taylor theorem connecting
two jumps uses this 2|dx ||dy | estimate.

This simplicity is also seen in the probabilistic proof we present now and
becomes ’strong subordination’.
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Elements of our proof

Probability for Analysts 1

[0, 1] with Lebesgue measure is a probability space.

For each discrete time 0 ≤ n consider the classical dyadic covering of size
2−n, together with its generated sigma algebra.
This becomes a filtered probability space ([0, 1],F , dx)

Xn = E (f |Fn) and Yn = E (Tσf |Fn)

are a pair of martingales that are differentially subordinate.

Indeed, E (f |Fn) =
∑

1≤k≤n ∆k(f ) + E (f ). So

|∆n(Tσf )| ≤ |σn||∆n(f )|

Here, dXn = ∆n(f ) = E (f |Fn)− E (f |Fn−1)
Note σn is measurable in Fn, such multipliers are called predictable.
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Elements of our proof

Probability for Analysts 2

Square bracket, discrete filtration:

[X ,X ]n =
n∑

k=1

(dXk)2

for example discrete random walk B: [B,B]n =
∑n

k=1 1 = n

Modern probability theory is concerned with filtered probability spaces
with continuous time: (Ω,F , µ), for example the Brownian filtration.
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Elements of our proof

Probability for Analysts 3

Square bracket and products (almost surely):

(XX )n−(XX )n−1 = 2Xn−1(Xn−Xn−1)+(Xn−Xn−1)2 = 2Xn−1dXn+(dXn)2

This can be generalised to continuous in time filtrations and defined the
square bracket as the predictable compensator of the product of
martingales. One obtains the bracket process:

[X ,X ] = X 2 −
∫

X−dX

Indeed, X 2
0 +

∑
i (X

T n
i+1 − XT n

i ) with T n for all n sequence of increasing
stopping times.
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Elements of our proof

Differential subordination

Y differentially subordinate to X if [X ,X ]t − [Y ,Y ]t is a non-negative
and non-decreasing function of t ≥ 0.

If the martingale has discontinuous paths (jumps) then this bracket differs
from 〈, 〉 in that subordination gives precise information at the instances of
jumps.
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Elements of our proof

Why is this related to CZO?

There is the famous formula of Gundy Varopoulos. There is also one for
jumps (second order Riesz transforms) with strong subordination

Theorem (Arcozzi, Domelevo, P. (2015))

The second order Riesz transforms R2
i f , 1 ≤ i ≤ m, and Rjk f ,

1 ≤ j , k ≤ n, of a function f ∈ L2(G ) as defined in can be written as the
conditional expectations

R2
i f (z) = E(M i ,f |Z0 = z) and Rjk f (z) = E(M j ,k,f |Z0 = z).

Here M i ,f
t and M j ,k,f

t are suitable martingale transforms of the martingale
M f

t associated to f , and Zt is a suitable random walk on G

Mα,f ,T ,Z0
t = f (T ,Z0) +

∫ t
0 (Aα∇z f (s,Zs−), dZs) using the augmented

gradient ∇f = (X+
1 , ...,X

+
n ,X

−
1 , ...,X

−
n ,Y1, ...,Ym)
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Elements of our proof

The discrete Hilbert transform

We consider the averages version of the discrete Hilbert:

1

2
(H+ + H−)

Its kernel can be calculated and its Fourier multiplier is a signum cosinus,
square of operator is not quite −I .

The underlying weak formulation for the Hilbert transforms involves
Poisson extensions instead of heat extensions, this means that time is also
governed by a Brownian motion instead of deterministic.

Furthermore, the formula requires a 4 by 4 ’rotation’ matrix, treating
continuous time t as if it were discrete.

Differential subordination and orthogonality only with respect to sharp
bracket.
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Elements of our proof

Riesz vector estimates

Some of these difficulties are also visible if one looks for dimensionless
estimates of Riesz vector:

Mid to late 90s:

Riesz transforms in RN : Iwaniec, Martin.

Riesz transforms on compact Lie groups: Arcozzi.

certain orthogonal, differentially subordinate martingales: Banuelos,
Wang.

The Lp norms of the discrete Hilbert transform(s) is a famous open
question.

S. Petermichl (Université Paul Sabatier) Sharp Lp estimates St.Petersburg 32 / 36



Elements of our proof

What we know: dimensional behavior in Lp of Riesz vector

The square function of the Riesz vector or `2 of the Riesz vector

f 7→ |
−→
Ri f |`2 has dimensionless Lp bounds in

RN (Stein/Pisier/Dragicevic, Volberg)

Gaussian setting (Meyer/Pisier/Dragicevic, Volberg)

Heisenberg group (Coulhon, Mueller, Zienkiewicz/Piquard)

Riemannian manifolds (Carbonaro, Dragicevic)
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Elements of our proof

What we know: dimensional behavior in Lp of Riesz vector

Francoise Piquard:

In ZN this dimension-free behavior is only seen for p > 2 and there is a
dimensional growth when 1 < p < 2.

Positive result: non-commutative methods.

Negative result: uses the fact that functions can have non-zero derivatives
outside of their support.
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Elements of our proof

Lamberton’s/Piquard’s example

We try to arrive at a contradiction for

‖
−−→
∂k+F‖Lp(`2) 6 Cp‖(−∆)1/2F‖Lp

with Cp independent of dimension.

To construct test functions F , choose tensor products made of f : Z→ R
supported in A = {−1, 1}:
f = −X{−1} + X{1} (nearly any mean 0 function will do)

F : ZN → R, x 7→
N∏
j=1

f (xj)

Then ‖F‖Lp = ‖f ‖NLp and ∂k+F (x) = ∂k+f (xk)
∏

j 6=k f (xj).
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Elements of our proof

Lamberton’s/Piquard’s example

Thus
p
√
N‖1Ac∂+f ‖Lp 6 Cp

√
N‖∂+∂−f ‖1/2

Lp ‖f ‖
1/2
Lp .

When ‖1Ac∂+f ‖Lp 6= 0 this is impossible for p < 2. Recall
f = −X{−1} +X{1} and A = {−1, 1} and thus ∂+f has support outside of
A.

S. Petermichl (Université Paul Sabatier) Sharp Lp estimates St.Petersburg 36 / 36


	history
	Our contribution
	Sharp Lp estimates
	Elements of our proof

