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Abstract

We discuss completeness, minimality, and basisness, in L2 and Lp,
p 6= 2, of systems of functions in three families:

(a) eigensystems, or root systems, of Hill operators on a finite
interval, e.g.

Ly = −y ′′ + v(x)y , 0 ≤ x ≤ π,
with periodic, antiperiodic, or Dirichlet boundary
conditions;

(b) root systems of the perturbed Harmonic Oscillator
Operator

Hu = −u′′ + x2u + b(x)u, x ∈ R1,

(c) dilated systems un(x) = S(nx), n ∈ N, where S is a
trigonometric polynomial

S(x) =
m∑

k=0

ak sin(kx), a0am 6= 0, 0 ≤ x ≤ π.
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Abstract

We will present a series of results on the systems (a), (b), (c), from [1]
– [5] and more, and mention a few unsolved questions.
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Hill Operator

(a) The Hill operator is

Ly = −y ′′ + v(x)y , 0 ≤ x ≤ π,

with the regular b.c.
Per± y(π) = εy(0), y ′(π) = εy ′(0), ε = ±1

and the strictly regular b.c.
Dir y(π) = y(0) = 0.

The eigenvalues are squares n2, with notations, parities, and
multiplicities as below:
Eigenvalues Multiplicity of eigenvalue at n2 for n:

Even Odd
λ+

n Per+ 2 0
λ−n Per− 0 2
µn Dir 1 1
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Hill Operator, Cont’d

v is a complex-valued potential, v(x + π) = v(x), v ∈ L2, . . . ,H−1

f = SN f +
∑
n>N

Pnf (1)

Pn =
1

2πi

∫
|z−n2|=1/4

R(z; Lbc) dz (2)

strictly regular b.c.

1962 V.P. Mikhailov
1964 G.M. Keselman

regular b.c.
1979 A. A. Shkalikov
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Counterexamples: divergence in regular (non-strictly)
case

2006 Plamen Djakov –B. Mityagin,
A. Makin

v(x) =
∑
n>0

ei2nx

nα
+
∑
n<0

e−2inx

(−n)β
, α 6= β,

1
2
< α, β < 1.

In C2

Pf = 〈f , ψ1〉ϕ1 + 〈f , ψ2〉ϕ2, 〈ψj , ϕk 〉 = δjk

|〈•, ψ1〉ϕ1| = (sinα)−1

(sinα)2 = 1− |〈ψ1, ψ2〉|2

〈ψ1, ψ1〉 · 〈ψ2, ψ2〉
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Main Claim

Claim
(P. Dj. – B. Mi.)

(i) v = ae−2ix + be2ix

(ii) v = ae−2ix + Be4ix

(iii) v = ae−2ix + Ae−4ix + be2ix + Be4ix

Convergence? Yes:
(i) IFF |a| = |b|
(ii) NO, for Per+

(iii) YES, iff |A| = |B|.
(but we exclude the case when − b2

4B , − a2

4A are exact
squares m2, m ∈ N).
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Technical Tools B+,B−

Definition
For n ∈ N a walk from −n to +n (or from +n to −n is defined as a
sequence of steps x = {x(t)}ν+1

t=1 , 1 ≤ ν = ν(x) <∞ where
x(t) ∈ 2Z \ {0}, and

∑ν+1
t=1 x(t) = 2n [or −2n].

A walk is admissible if its vertices

j(t) = j(t , x) = −n +
t∑

i=1

x(i), [or + n +
t∑

i=1

x(i)],

1 ≤ t ≤ ν + 1, j(0) = −n [or + n]

satisfy j(t) 6= ±n, 1 ≤ t ≤ ν.
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Technical Tools II

Let X±n be the set of all admissible walks from −n to −n (respectively,
+n to −n). For each walk x ∈ X±n set

h(x , ζ, ν) =

∏ν+1
t=1 ν(x(t))∏ν

t=1
[
n2 − j(t)2 + ζ

]
and define

B±(n, ζ) =
∑

x∈X±
n

h(x , ζ, ν).
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Technical Tools III

(i)

B+(n, ζ) = h(ω∗,0)

(
1 + O

(
log n

n

))
ω∗(t) = 2

h(ω∗,0) = 4
(

b
4

)n

[(n − 1)!]2

B−(n, ζ) = 4
(a

4

)n
[(n − 1)!]2
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Technical Tools IV

(iv) ae−2irx + be+2isx , a,b 6= 0; r , s ∈ N, r 6= s.
NO if:

bc = Per+,
or bc = Per−, r , s odd
or bc = Per−, r = 1, s ≥ 3.

Que. r = 1, s = 2, Per−.
“NO” but our difficulties are combinatorial.
An obstacle: the Catalan Numbers identity

Ck+1 =
k∑

i=1

CiCk+1−i

where

Ck =
1
k

(
2k − 2
k − 1

)
, k ≥ 1.
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Dilated Systems of Trigonometric Polynomials

Let un(x) = S(nx), n ≥ 1, where

S(x) =
m∑

j=0

aj sin(2jx),

analyzed in Lp[0, π], 1 < p <∞.
1936 L.A. Lyusternik
1970 J. Neuwirth – J. Ginsberg – D. Newman

Define the polynomial

a(z) =
m∑

j=0

ajz j ,

where

Z (a) = F− ∪ F 0 ∪ F +

a(α) = 0 |α| < 1 |α| = 1 |α| > 1.
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Dilated Systems II

Note: the isometry
T : f (x)→ f (2x),

has spectrum

σ(T ) = D, D = {ζ ∈ C : |ζ| < 1}.

Then
un = a(T ){sin(nx)}.

We factorize
a(z) = a−(z)a0(z)a+(z).
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Zeroes outside the unit circle present no obstacle

We note that a+(T ) is invertible, for

B =
∏
α∈F +

(α− T )−1

=
1

2πi

∫
|z|=1+δ

R(z, t)
dz

a+(z)
,

1 + 2δ = min{|α| : α ∈ F +}.

Let vn = Bun = a−(T )a0(T ){sin(nx)}.

Claim 1
U = {un} is a basis in L2[0, π] if and only if F− ∪ F 0 = ∅.
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Zeroes inside the unit circle I

Claim 2
If F− 6= ∅, the system U is not complete. [I. Schur, R. Cohen]

Proof
Indeed, put for a(α) = 0, |α| < 1,

h(x) =
∞∑

k=0

αk sin(2kx).

Letting {w odd } = Ω, define

N(ω) =
{
ω · 2k : k ∈ N0 = N ∪ {0}

}
so

N =
⋃
ω∈Ω

N(ω), N(ω) ∩ N(ω′) = ∅ if ω 6= ω′.
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Zeroes inside the unit circle II

Proof.
Then for n = ω · 2k0 , ω 6= 1,

〈h,un〉 =

∫ π

0
h(x)un(x) dx = 0,

(no bar, no conjugation) and for ω = 1,

〈h,un〉 =
m∑

k=0

ak 〈h, sin(2k0+kx)〉 =

=
π

2

m∑
k=0

akα
k0+k =

π

2
αk0a(α) = 0.

So H(f ) =
∫ π

0 h(x)f (x) dx is a non-zero bounded linear functional on
Lp, 1 ≤ p <∞, such that H(un) = 0, for all n.
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Zeroes on Unit Circle I

So assume (?) F = F 0 6= ∅, i.e., all roots α, a(α) = 0, are in
T = {z ∈ C : |z| = 1}.

Claim 3
Under (?)

a(z) = am
∏
α∈F 0

(α− z)µ(α).

Put κ∗ = max{µ(α)− 1 : α ∈ F 0}. The system U is complete, and
minimal, i.e., ∃{Φk}, 〈Φk ,un〉 = δkn, and

‖Φk‖q � (log k)κ
∗+1/2 ,

so U is not a basis in L2 (or Lp, 1 < p <∞).
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Zeroes on Unit Circle II

How to find {Φk}? Let

n = ω2k0 , Φn ∼ ϕ(x) ∈ Lq

ϕ(x) = Q(ω)ϕ =
∞∑

k=0

Yk sin(ω2kx), j ∈ N(ω), j = ω2k ;

then
2
π

∫ π

0
ϕ(x)uj(x) dx =

m∑
i=0

aiYk+i

and we are looking for a solution of a non-homogeneous infinite
system

m∑
i=0

aiYk+i =


0, 0 ≤ k < k0;

1, k = k0;

0, k > k0.

(†)
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Zeroes on Unit Circle III

If {Xj , j ∈ Z} solves such a system for k0 = 0 and k < 0 then for any
k0 ≥ 0

Yk = Xk−k0

solves (†)

Xk = 0, k > 0; X0 =
1

a(0)

X−k =
1
k !

(
d
dt

)k [ 1
a(t)

]∣∣∣∣
t=0

, k ≥ 0.

Claim
The system U is minimal for any polynomial a(z), a0 6= 0.

(Inequalities for the norms of the inverses of Vandermonde matrices)
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Multifrequency Case

We again set U = {un(x)} and un(x) = S(nx), but now

S(x) =
∑
j∈J

aj exp(ijx), |J| <∞

=
∑
α∈Nm

0
α∈K , K⊆Nm

0

a(α) exp

i

 m∏
j=1

pαj
j

 x

 , |K | <∞.

is modeled by a multi-variable polynomial

A(ω) =
∑
α∈K

a(α)wα, wα =
m∏

j=1

wαj
j .
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Multifrequency Case II

We use the isometries Tj : f (x) 7→ f (pjx), 1 ≤ j ≤ m. We adjust the
sets

N(ω) = {ω · pα : α ∈ Nm
0 }

ω ∈ Ω = {q ∈ N : q does not have factors pj , 1 ≤ j ≤ m}.

Consider
E ∼= `2 ' H2(D) ' `2

(
Ω; H2(Dm)

)
.

All E(ω) = Im Q(ω), ω ∈ Ω, are invariant with respect to Tj , 1 ≤ j ≤ m,
i.e. multiplication by wj in H2(Dm). Certainly,

‖f‖2 =
∑
ω∈Ω

‖Q(ω)f‖2.
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Easy Claims

Now all the questions about U become the questions about the system

V = {v(α)}α∈Nm
0
,

= v(α)(w) = A(w)wα,
in H2(Dm).

Claim
If

Z (A) ∩ Dm = ∅, (??)

then A(T )−1 = B is well-defined and {v(α)} is a (Riesz) basis and U is
a (Riesz) basis as well.
If V (or U) is a Riesz basis then (??) holds.

Boris Mityagin (Ohio State) Geometry of Dilated Systems St. Petersburg, June 2016 29 / 53



Minimality

Claim
The system U is minimal if a(0) 6= 0.

Indeed, with

〈f ,g〉 =
1

(2π)m

∫
Tm

f (w)g(w) dmt ,

wj = eitj , 1 ≤ j ≤ m,

(no bar, no conjugation),

〈w−τ ,wα〉 = δ(α, τ), ∀α, τ ∈ Zm.
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Minimality II

Try an adjustment

〈 1
A(w)

w−τ ,A(w)wα〉 ??
= δ(α, τ)

1
A(w)

=
∑
σ∈Nm

0

b(σ)wσ

w−τ

A(w)
=
∑
σ∈Nm

0

b(σ)wσ−τ

but if σ − τ ≤ 0 does not hold then

〈wσ−τ ,wα〉 = 0, ∀α ∈ Nm
0

so put
Φt (w) =

∑
σ≤τ

b(σ)wσ−τ .
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Minimality III

Φt (w) =
∑
σ≤τ

b(σ)wσ−τ .

This finite sum is well-defined, and

〈Φτ , v(α)〉 = δ(α, τ), for all α, τ ∈ Nm
0 .
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Completeness I

Z (A) ∩ Dm = Z (A) ∩ Tm.

1970 NGN
A(w)/A(rw)→ 1 a.e. on Tm.

|A(w)/A(rw)| ≤ 2deg A

Completeness implies uniquenss of the system Φτ and the fact that for
1D projectors Pτ = 〈•,Φτ 〉v(τ),

‖Pτ‖ = ‖Φτ‖ · ‖v(τ)‖ � ‖Φτ‖.
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Completeness II

But
‖Φτ‖2 =

∑
σ≤τ
|b(σ)|2, B(w) =

1
A(w)

,

so these norms are uniformly bounded if and only if

1
A(w)

∈ H2(Dm), or

1
P(t)

∈ L1(Tm),

P(t) = |A(eit )|2.
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Incompleteness with few frequencies

Claim
If m ≤ 3 and Z (A) ∩ Dm 6= ∅, then

1
A(w)

6∈ H2(Dm).

Corollary
Under the same assumptions, V or U is NOT a basis.
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Obstruction to Incompleteness Proof with many
frequencies

m ≥ 4. It could happen that
1

A(w)
∈ H2(Dm).

Example
Fix ck > 0, 1 ≤ k ≤ m, with

∑m
k=1 ck = 1, and define

A(w) = 1−
m∑

k=1

ckwk . (E∗)

On Tm this equals

m∑
k=1

ck (1− eitk ) =
m∑

k=1

ck [(1− cos tk )− i sin tk ] .
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Obstruction to Incompleteness II

Then

P(t) = |
m∑

k=1

ck2 sin2
(

tk
2

)
|2 + |

m∑
k=1

ck sin(tk )|2

� r4 + |`(t)|2, `(t) =
m∑

k=1

ck tk , |t | � 1.

We note that
∫
|ζ|≤δ

dζ0 dζ1 . . . dζm−1

ζ2
0 + ζ4

1 + · · ·+ ζ4
m−1

<∞ if and only if m ≥ 4, since

it is within a constant multiple of∫ δ

0

∫ ρ2

0

dζ ρm−2 dρ
ζ2 + ρ4 =

∫ δ

0

∫ 1

0

dη ρm−4 dρ
1 + η2 .
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Recall that v(α) = A(w)wα, α ∈ Nm
0 . Instead of asking whether this

system is a basis in H2(Dm), or `2(Nm
0 ) we can move to weighted

H2(Dm; P), or L2(Tm; P) and ask whether {wα} is a basis.

Claim
In the case (E∗), m ≥ 4, for the partial sums

Σ(τ)f =
∑
α≤τ
〈Φα, f 〉vα,

‖Σ(τ)‖ are not bounded.

The proof comes from the multi-dimensional A2 Muckenhoupt
condition.

1988 Kazarian – Lizorkin
2010 Kabe Moen

The weight P(t) = `(t)2 + ρ4 is not good. (!!!)
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But if we go to the original system

vα(x) =
K∑

k=0

ak exp (i[pα]kx) , p = (pj)
m
j=1, α ∈ Nm

0 ,

its linear ordering would fit to a monotone arrangement of the
multi-index sequence {pα}, or its linear ordering by monotonicity of the
linear form

M(α) =
m∑

j=1

αj log pj .

It leads us to the question on the boundedness of the projection QM .
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exp i(α, t)→ the same, if M(α) ≥ 0
→ 0 ifM(α) < 0.

in the weighted L2(Tm; P), m ≥ 4, say,

P(t) =

 m∑
j=1

tj

2

+

 m∑
j=1

t2
j

2

.

M(α) is “essentially irrational,” i.e., the coefficients

µ∗j = log pj , 1 ≤ j ≤ m,

of the linear function

M(y) =
m∑

j=1

µjyj

are rationally independent.
Boris Mityagin (Ohio State) Geometry of Dilated Systems St. Petersburg, June 2016 40 / 53



If all µj were rational QM would be equivalent to the case M0(y) = y1;
then known A2 conditions are applicable and QM0 is unbounded, for
any m.
If QM∗ were bounded, m ≥ 4 (I do not believe so) we would have
Babenko–type Shauder (but not Riesz) basis in H2(Dm), or even in
L2(Tm).
1948 L2[−π, π]

Take A(t) =

{
|t |α, −π ≤ t ≤ 0;

|t |β, 0 ≤ t ≤ π,

for 0 < α, β < 1
2 . vn(t) = A(t)eint , n ∈ Z is a (conditional) basis if

α = β, but is NOT a basis if α 6= β.
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Harmonic Oscillator Perturbation I

(b) Let

T = − d2

dx2 + x2,

D(T ) = {f ∈W 2,2(R) : x2f ∈ L2(R)}

and

B = 2iax , a ∈ R \ {0},
D(B) = {f ∈ L2(R) : xf ∈ L2(R)}

We consider the operator L = T + B.
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Eigenfunctions of unperturbed operator

The eigenvalues and eigenfunctions of T are well-known; we have

Thk = (2k + 1)hk , k ≥ 0,

where hk are the Hermite functions given by

hk = (2kk !
√
π)−1/2Hk (x)e−x2/2,

where Hk (x) are the Hermite polynomials given by

Hk = ex2/2
(

x − d
dx

)k

e−x2/2.
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Hermite Function Asymptotics

We have the following asymptotic for the Hermite functions,

hm(x) =
21/4

π1/2
1

m1/4

[
cos

(
x
√

2m + 1−m
π

2

)
+

x3

6
1√

2m + 1
sin
(

x
√

2m + 1−m
π

2

)
+ O

(
1
m

)]
.
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Hermite Function Lp norm Inequalities I

Lemma
As n→∞,

‖hn‖r ∼ n−
1
2 ( 1

2−
1
r ), 1 ≤ r < 4

‖hn‖r ∼ n−
1
8 log n, r = 4

‖hn‖r ∼ n−
1
6 ( 1

r + 1
2 ), r > 4

See 1993 Thangavelu [Lemma 1.5.2] for the sketch of the proof and
further explanations of these claims.
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Hermite Function Inequalities II

If p > 2, and q is the conjugate exponent to p, then q < 2, 2q < 4 so

‖hk‖2q ∼ k−
1
2

(
1
2−

1
2q

)
= k−

1
4p , p > 2.

For p = 2 we have 2q = 4 and

‖hk‖4 ∼ k−
1
8 log k , p = 2.

Finally, if 1 ≤ p < 2 then 2q > 4 so

‖hk‖2q ∼ k−
1
6

(
1

2q + 1
2

)
= k−

1
12

(
2− 1

p

)
, 1 ≤ p < 2
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Biorthogonal expansion I

Let

fk = hk (x + ia),

gk = hk (x − ia),

so

Lfk = (2k + 1 + a2)fk ,

L∗gk = (2k + 1− a2)gk ,

and
‖fk‖ = ‖gk‖ = ‖eaxhk (x)‖.
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Biorthogonal expansion II

Claim
If Pku = 〈u,gk 〉fk , then

‖Pk‖ =
1

2(2k)1/4
√
|a|π

exp
(

23/2|a|
√

k
)(

1 + O
(

k−1/2
))

, k →∞,

(∗)
so

lim
k→∞

1√
k

log‖Pk‖ = 23/2|a|.
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Slow Projection Decay

Claim

Let B ∼ p(x)
d
dx

+ q(x). For any σ, 0 < σ ≤ 1, we can choose B such
that

lim
k→∞

k−σ‖Pk‖ = c, 0 < c <∞.

2013 Petr Siegl – Joseph Viola – B. Mityagin.

Question: What about − d2

dx2 + q(x)?
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Number of Nonreal Eigenvalues

We consider the cases b(x) ∈ Lp(R), 1 ≤ p <∞, or

b(x) =
∑

k

ckδ(x − τk ).

Claim
If

(i) b(x) = −b(−x), and
(ii) ‖b|L1‖ = σ, or

∑
k |ck | = σ > 2,

then the number of non-real eigenvalues

N∗ ≤ A(σ logσ)6.

If also (iii) supp b is bounded, then
N∗ ≤ A(σ logσ)2. 2014–15 B. Mityagin
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Thank You

The End
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