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Abstract

We discuss completeness, minimality, and basisness, in L2 and LP,
p # 2, of systems of functions in three families:

(a) eigensystems, or root systems, of Hill operators on a finite
interval, e.g.

Ly =—y"+v(x)y, 0<x<m,

with periodic, antiperiodic, or Dirichlet boundary
conditions;

(b) root systems of the perturbed Harmonic Oscillator
Operator

Hu = —u" + x?u + b(x)u, xcR'

(c) dilated systems up(x) = S(nx), n € N, where Sis a
trigonometric polynomial

m
S(x)=> aksin(kx), aam#0, 0<x<m.
k=0
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Abstract

We will present a series of results on the systems (a), (b), (c), from [1]
—[5] and more, and mention a few unsolved questions.
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o Hill Operator

© Dilated Systems
@ Single-Frequency Case
@ Multi-Frequency Case

e Root Systems of Harmonic Oscillator Operator
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Hill Operator

(a) The Hill operator is
Ly =—y"+v(x)y, 0<x<m,

with the regular b.c.
Per* y(m) = ey(0), y'(r) = ey'(0), e = +1
and the strictly regular b.c.
Dir y(m) = y(0) = 0.
The eigenvalues are squares n?, with notations, parities, and

multiplicities as below:
Eigenvalues Multiplicity of eigenvalue at n? for n:

Even Odd
A Pert 2 0
A, Per™ 0 2
tn Dir 1 1
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Hill Operator, Contd

v is a complex-valued potential, v(x + 7) = v(x), v € L2 ... H™'

f:SNf-f-ZPnf (1)
n>N
1
|z—n?|=1/4

strictly regular b.c.

1962 V.P. Mikhailov
1964 G.M. Keselman

regular b.c.
1979 A. A. Shkalikov
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Counterexamples: divergence in regular (non-strictly)

case

2006 Plamen Djakov —B. Mityagin,

A. Makin
ei2nx e—2inx 1
V(X):ZW—FZW, OC#B, §<CV,B<1.
n>0 n<0

In C2

Pf=(f,oh)o" + (F4?)e?, (W, o") = ok
(o, ") = (sina) ™
(@7, v?) P
@l e7) - (92, 92)

(sina)? =1-—
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Main Claim

(P. Dj. — B. Mi.)
(i) v =ae 2* + pe?*
(i) v = ae—2X + Be*
(i) v =ae 2% + Ae~*¥ 4 pe?x 1 Betx
Convergence? Yes:
(i) IFF [a] = |b|
(ii) NO, for Per™
(i) YES, iff |A|l =|B].

2
(but we exclude the case when — 2, — é are exact
squares m?, m € N).
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Technical Tools B*, B~

Definition

For n € N a walk from —nto +n (or from +nto —nis defined as a
sequence of steps x = {x(t) ‘,’*11, 1 <v =wv(x) < oo where

x(t) € 22\ {0}, and ' x(t) = 2n [or —2n].

A walk is admissible if its vertices

t
j(t) = j(t, x) = —”+Z ), for +n+> " x(i)]
i=1

1§t§u+L j(0) = —nor +n]

satisfy j(t) # £n, 1 <t <w.
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Technical Tools Il

Let X7 be the set of all admissible walks from —nto —n (respectively,
+nto —n). For each walk x € X7 set

I vxa)
h(x,¢,v) = Hlt/:1 [tnz —j(t)2 + d

and define
B*(n,¢)= > h(x,¢,v).

xeXE
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Technical Tools IlI

0
B*(n,¢) = h(w*,0) (1+0 ("’g”))
W(t) = 2
.0y =4 (2) -1
B (n.¢)=4(2) 1tn- 1P
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Technical Tools IV

(iv) ae 2™ + bet?* a b+#0;r,seN, r+#s.
NO if:
@ bc = Per™,
@ orbc = Per, r, s odd
@orbc=Per,r=1,s5>3.

Que.r=1,s=2, Per .
“NO” but our difficulties are combinatorial.
An obstacle: the Catalan Numbers identity

K
Cki1 = Z CiCki1-i
i

where

1/2k -2
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© Dilated Systems
@ Single-Frequency Case
@ Multi-Frequency Case
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o Hill Operator
© Dilated Systems

@ Single-Frequency Case

e Root Systems of Harmonic Oscillator Operator
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Dilated Systems of Trigonometric Polynomials

Let un(x) = S(nx), n > 1, where
m .
S(x) = asin(2x),
j=0

analyzed in LP[0, 7], 1 < p < o0.

1936 L.A. Lyusternik

1970 J. Neuwirth — J. Ginsberg — D. Newman
Define the polynomial

m
a(z)=> az,
j=0

where

Za = F U F° u F*
ala)=0 la] <1 la] =1 la| > 1.
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Dilated Systems Il

Note: the isometry
T : f(x) — f(2x),

has spectrum
o(T)=D, D={(eC:[¢|<1}.

Then
up = a(T){sin(nx)}.

We factorize
a(z) = a (2)a%(z)a"(2).
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Zeroes outside the unit circle present no obstacle

We note that a™(T) is invertible, for

B= ] (a-T)"
acFt
1 az
=5 / R(Z’t)r(z),
|z|=146

1420 =min{|la|: a € FT}.

Let v, = Bup = a(T)a’(T){sin(nx)}.

U = {up} is a basis in L2[0, 7] if and only if F~ U F® = ().
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Zeroes inside the unit circle |
If F— # (), the system U is not complete. [l. Schur, R. Cohen]

Indeed, put for a(«) =0, |o| < 1,

= i of sin(2%x).

k=0

Letting {w odd } = ©, define
N(w) = {w-2k:keN0:NU{0}}
SO

N= | JNw), Nw)NNw)=0ifws#d'

weN
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Zeroes inside the unit circle |l

Thenforn=w-2%, w #1,

(B, Up) = /0 " h(x)un(x) dx = 0,

(no bar, no conjugation) and for w = 1,

(h,un) = in: ax(h, Sin(2k°+kx)> =
k= 0

= Za ofotk — koa( )=0.

So H(f) = [5 h(x)f(x) dx is a non-zero bounded linear functional on
LP,1 < p< oo, such that H(up) = 0, for all n. O

v

Boris Mityagin (Ohio State) Geometry of Dilated Systems St. Petersburg, June 2016 22 /53



Zeroes on Unit Circle |

So assume (x) F = F? #£ (), i.e., all roots a, a(a) = 0, are in
T={zeC:|z]=1}.

Claim 3
Under (%)

a(z) = am [] (a—2)".

a€EFO

Put x* = max{u(a) — 1 : « € F°}. The system U is complete, and
minimal, i.e., IH{ Pk}, (Pk, Un) = dkn, and

|Pllq = (log k)< *+1/2,

so U is not a basis in L? (or LP, 1 < p < o).
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Zeroes on Unit Circle |l

How to find {®x}? Let
n=w2k &~ px)eld
p(x) = Qw)p = Y Yisin(w2kx), jeNw), j=w2k
k=0

then

2 [T 7

2 [ toun o~ > a
and we are looking for a solution of a non-homogeneous infinite
system

m 0, 0< k< ko;
Y aYei=31, k=k (t)
i=0 0, k> ko.
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Zeroes on Unit Circle Il

If {X;,j € Z} solves such a system for ko = 0 and k < 0 then for any
k>0
Yk = Xk—k,

solves (1)

1
X =0,k >0; oni

a(0)
k
o= (@) L)

The system U is minimal for any polynomial a(z), ay # 0.

k> 0.

)
t=0

(Inequalities for the norms of the inverses of Vandermonde matrices)
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o Hill Operator

© Dilated Systems

@ Multi-Frequency Case

e Root Systems of Harmonic Oscillator Operator
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Multifrequency Case

We again set U = {up(x)} and un(x) = S(nx), but now

S0 = 3" aexpliix). U] < o
jed

— Zm exp({H ]X),K<oo.

acK, KCN7

is modeled by a multi-variable polynomial

Aw)=> ale)w®, w*=]]w"
j=1

aeK
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Multifrequency Case |l

We use the isometries T; : f(x) — f(pjx), 1 <j < m. We adjust the
sets

N(w) ={w-p*:a e Ny
w € Q = {q € N: gdoes not have factors p;, 1 <j < m}.

Consider
E =~ HD) ~ (2 (Q; H2(Dm)) .

Al E(w) = Im Q(w), w € Q, are invariant with respectto 7;, 1 <j < m,
i.e. multiplication by w; in H2(D™). Certainly,

1712 = > _lQ)f|I2.

weN
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Easy Claims

Now all the questions about U become the questions about the system

V = {V(a)}aENg’a

; 2 m
= v(a)(w) = A(w)w?, in FE(PT).

Claim

Z(A)NDM =, (%)

then A(T)~' = B is well-defined and {v(«)} is a (Riesz) basis and U is
a (Riesz) basis as well.
If V (or U) is a Riesz basis then (xx) holds.
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Minimality

The system U is minimal if a(0) # 0.

Indeed, with

1 m
(r.9) = (2”""@4 f(w)g(w)a™t,

wi=eli, 1<j<m,
(no bar, no conjugation),

(w=,w*) =é(a,7), Va,7€Z™.
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Minimality I

Try an adjustment

<A(1W) W, Aw)w?) Z 6(a, 7)
1 a
Aw) U;M)n b(o)w
w" o
Aw) O;Ngq b(o)w

but if o — 7 < 0 does not hold then
(W, w*) =0, VaeNj

so put
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Minimality 11l

O(w) =Y blo)w .

o<t

This finite sum is well-defined, and

(@, v(a)) =6(a,7), forall a,7 e Nj.
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Completeness |

Z(A)NDm = Z(A)NT™.

1970 NGN
A(w)/A(rw) —1 a.e.onT".

A(w)/A(rw)| < 2994

Completeness implies uniquenss of the system ¢.. and the fact that for
1D projectors P, = (e, &) v(7),

[Pr[l = ([l - (V) = [[~]l-
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Completeness |l

But ]
2 _ 2 _
|72 = STIb)E B = 2o
o<t
so these norms are uniformly bounded if and only if
1 2 m
W eH (D ), or
1 1(mm
P(D) e L(T"),
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Incompleteness with few frequencies

If m < 3and Z(A) N D™ # (), then

1
A(w)

Under the same assumptions, V or U is NOT a basis. \

¢ H*(D™).
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Obstruction to Incompleteness Proof with many

frequencies

1 2(Tym
> 4, — :
m > 4. It could happen that A(w) € H*(D™)

Fix ¢k > 0,1 < k < m, with Y7, ¢k = 1, and define

Aw) =1->" ckW. (E%)
k=1

On T™ this equals

m m
> e(1—e) =" [(1 —coste) — isinty].
k=1

k=1
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Obstruction to Incompleteness |l

Then
m t m
P t) = ’Z Cx2 Sin2 <£) |2 + ’Z C sin(tk)\Z
k=1 1
m
<rt U0, o) = ch,k’ <1,
k=1
We note that d¢odGi ... A1

21t < oo if and only if m > 4, since
Ici<s 0 1 m—1

it is within a constant multiple of
/ /p dem 2dp /5 1 dnpm74dp
CEHpt Jodo 1+
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Recall that v(a) = A(w)w®, o € N{J. Instead of asking whether this
system is a basis in H2(D™), or ¢2(NJ") we can move to weighted
H2(D™; P), or L3(T™; P) and ask whether {w®} is a basis.

Claim

In the case (E*), m > 4, for the partial sums

(M) = (Pa, Ve,

a<t

IIZ(7)]| are not bounded.

The proof comes from the multi-dimensional A> Muckenhoupt
condition.

1988 Kazarian — Lizorkin
2010 Kabe Moen
The weight P(t) = £(t)? + p* is not good. (!!!)
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But if we go to the original system

K
Va(X) =) akexp(i[plkx), p=(p)[Ly, €N,
k=0

its linear ordering would fit to a monotone arrangement of the
multi-index sequence {p®}, or its linear ordering by monotonicity of the
linear form

m
M(e) = ojlog p;.
=

It leads us to the question on the boundedness of the projection Q.
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expi(a, t) — the same, if M(a) > 0

~ 0ifM(a) < 0.
in the weighted L2(T™; P), m > 4, say,

2
m

2
P~ (0] + (¢
j=1 j=1
M(«) is “essentially irrational,” i.e., the coefficients
pj =logp;, 1<j<m,
of the linear function

m
M(y) =y
j=1

are rationally independent.
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If all ;1; were rational Qy would be equivalent to the case My(y) = y1;
then known A, conditions are applicable and Quy, is unbounded, for
any m.
If Qu~ were bounded, m > 4 (I do not believe so) we would have
Babenko—-type Shauder (but not Riesz) basis in H2(D™), or even in
L2(T™).
1948 L2[—7, 7]
Take A(f) = {'” , —msts;
|t|ﬁa 0<t<m,

for 0 < a, B < 3. va(t) = A(t)e™, n € Z is a (conditional) basis if
a = 3, butis NOT a basis if a # 5.
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e Root Systems of Harmonic Oscillator Operator
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Harmonic Oscillator Perturbation |

(b) Let

2

dx?
D(T) = {f € W2(R) : x*f € L3(R)}

T = + X2,
and

B =2jax, acR\{0},
D(B) = {f € L3(R) : xf € L3(R)}

We consider the operator L= T + B.
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Eigenfunctions of unperturbed operator

The eigenvalues and eigenfunctions of T are well-known; we have
Thk:(2k+1)hk, k>0

)

where hy are the Hermite functions given by
hi = (kK1) 712 Hi(x)e /2,

where Hy(x) are the Hermite polynomials given by

22 d k_22
X
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Hermite Function Asymptotics

We have the following asymptotic for the Hermite functions,

21/4 A

hm(x) = o ey [cos (x 2m+1 — m%)

x3

1 . us 1
+ Eimsm (x 2m+1 —m§> +O<m>].
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Hermite Function LP norm Inequalities |

Lemma

As n— oo,

Bl ~n2G=7), 1 <r<a4
lAnllr ~ n_% logn, r=4

hallr ~ n=s(t2), r>4

See 1993 Thangavelu [Lemma 1.5.2] for the sketch of the proof and
further explanations of these claims.
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Hermite Function Inequalities |l

If p > 2, and q is the conjugate exponent to p, then g < 2,2g < 4 so

1 1
Iillag ~ k2 (37%) — k5, p> 2.
For p = 2 we have 2q = 4 and
Ihklla ~ k™3 log k, p=2.

Finally, if 1 < p < 2then2qg > 4 so

IIthZqu‘%(%ﬁ%) _ k=3, 1<pen
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Biorthogonal expansion |

Let
fx = he(x + ia),
9k = hi(x —ia),
SO
Lfe = (2k +1 + &)k,
L*gy = (2k +1 — &) gk,
and

il = llgwll = lle* h(x)]|-
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Biorthogonal expansion |l

If Pru= <U, gk>fk: then

1Pkl = —2(2k)1/14\/%exp (23/2\3\\/F> (1 L0 (k—1/2>> k= oo,
(+)
so

0 1 o 3/2
Jm - log|[Pl = 2%/al
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Slow Projection Decay

Let B ~ p(x)d% + g(x). Forany o, 0 < ¢ < 1, we can choose B such
that

lim k~7)|Pg]|=c¢, 0<c<oc.
k—00

2013 Petr Siegl — Joseph Viola — B. Mityagin.

Question: What about —;2 +q(x)?
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Number of Nonreal Eigenvalues

We consider the cases b(x) € LP(R), 1 < p < oo, Of

b(x) = ckd(x — 7%).
K

Claim

(i) b(x) = —b(—x), and
(i) [BIL"]| = o, 0or Yylekl =0 > 2,
then the number of non-real eigenvalues

N* < A(ologo)®.

If also (iii) supp b is bounded, then
N* < A(clogo)®.  2014-15 B. Mityagin
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Thank You

The End
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