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The Bergman projection

We let D be the open unit disk.
Let P denote the Bergman projection

Pf (z) :=

∫
D

f (w)

(1− zw̄)2 dA(w), z ∈ D,

which is well-defined if f ∈ L1(D). It is well-known that P maps
Lp(D)→ Lp(D) for 1 < p < +∞, and that

P : L2(D)→ L2(D)

is a norm contraction. We write 〈·, ·〉D for the sesquilinear form

〈f , g〉D :=

∫
D
f (z)ḡ(z)dA(z),

which is well-defined if f ḡ ∈ L1(D). We shall be concerned with the
space PL∞(D), supplied with the canonical norm

‖f ‖PL∞(D) := inf
{
‖µ‖L∞(D) : µ ∈ L∞(D) and f = Pµ

}
.



The Bloch space

It is well-known that as a space, PL∞(D) = B(D), the Bloch space. This
seems to have been observed first in a 1976 paper by Coifman, Rochberg,
Weiss [CRW]. We recall that the Bloch space consists of all holomorphic
f : D→ C subject to the seminorm boundedness condition

‖f ‖B(D) := sup
z∈D

(1− |z |2)|f ′(z)| < +∞.

Indeed, if f = Pµ, where ‖µ‖L∞(D) ≤ 1, then

(1− |z |2)|(Pµ)′(z)| = 2(1− |z |2)

∣∣∣∣ ∫
D

w̄µ(w)

(1− zw̄)3 dA(w)

∣∣∣∣
≤ 2(1−|z |2)

∫
D

|w |
|1− zw̄ |3

dA(w) = 2(1−|z |2)
+∞∑
j=0

[( 3
2 )j ]

2

(j!)2(j + 3
2 )
|z |2j ≤ 8

π
,

(1)

where the main loss of information is in the application of the triangle
inequality.



The Bloch space, cont

On the other hand, if f ∈ B(D) with f (0) = f ′(0) = 0, and we put

µf (w) := (1− |w |2)
f ′(w)

w̄
, w ∈ D,

then µf ∈ L∞(D), and

|µf (w)| = (1− |w |2)

∣∣∣∣ f ′(w)

w

∣∣∣∣ ≤ (1 + o(1))‖f ‖B(D) as |w | → 1,

while

Pµf (z) =

∫
D

(1− |w |2)f ′(w)

w̄(1− zw̄)2 dA(w) = f (z)− f (0) = f (z), z ∈ D.

so essentially there would appear to be a gap of the size 8/π between the
two norms. Perälä (Per) has shown that the bound 8/π in (1) is best
possible.



The Bloch space as a dual space

It is known that with respect to 〈·, ·〉D, B(D) can be identified with the
dual space of the Bergman space A1(D) in much the same way that
BMOA(D) is the dual space of H1(D) with respect to the dual action on
the circle T:

〈f , g〉T :=

∫
T
f (z)ḡ(z)ds(z),

where ds(z) := |dz |/(2π) is normalized arc length measure. Indeed, the
norm induced on B(D) by A1(D) is that of PL∞(D):

Proposition 1
For f ∈ B(D), we have that

‖f ‖PL∞(D) = sup
{
|〈f , g〉D| : g ∈ A2(D), ‖g‖A1(D) ≤ 1

}
.



Proof of Proposition 1
If f = Pµ, where µ ∈ L∞(D), then

〈f , g〉D = 〈Pµ, g〉D = 〈µ, g〉D, g ∈ A2(D),

so that
|〈f , g〉D| = |〈µ, g〉D| ≤ ‖µ‖L∞(D)‖g‖A1(D), g ∈ A2(D).

It is now immediate that
sup
{
|〈f , g〉D| : g ∈ A2(D), ‖g‖A1(D) ≤ 1

}
≤ ‖f ‖PL∞(D).

On the other hand, if, for f ∈ B(D), we have that
sup
{
|〈f , g〉D| : g ∈ A2(D), ‖g‖A1(D) ≤ 1

}
= M,

then g 7→ 〈g , f 〉D defines a linear functional on A1(D) of norm M, which
by the Hahn-Banach theorem has an extension to a linear functional on
L1(D) which also has norm M. The extended linear functional is then
represented by an element µ ∈ L∞(D), with ‖µ‖L∞(D) = M:

〈g , f 〉D = 〈g , µ〉D, g ∈ A2(D),

and it is clear that f = Pµ. By the definition of the norm on PL∞(D),
then,
‖f ‖PL∞(D) ≤ ‖µ‖L∞(D) = M = sup

{
|〈f , g〉D| : g ∈ A2(D), ‖g‖A1(D) ≤ 1

}
,

and we have arrived at the reverse inequality. The proof is complete.



Duality and dilations

For a function f , we let fr (z) := f (rz) denote its dilate. We shall need
the following identity.

Proposition 2
Suppose g = Pµ, where µ ∈ L∞(D), and that h ∈ L∞(T) is extended
harmonically to the interior D. Then

〈zgr , h〉T = 〈gr , ∂h〉D = 〈g , (∂h)r 〉D = 〈Pµ, (∂h)r 〉D = 〈µ, (∂h)r 〉D.

Proof of Proposition 2
The first equality follows from Green’s formula. The second step uses
that the dilation is self-adjoint, which is easy to check using Taylor series
expansions. The third equality expresses that g = Pµ, while the fourth
uses that P is self-adjoint and preserves the holomorphic functions.



Basic estimates

Corollary 3
Suppose g = Pµ, where µ ∈ L∞(D), and that h ∈ L∞(T) is extended
harmonically to the interior D. Then

|〈zgr , h〉T| ≤ ‖µ‖L∞(D)‖(∂h)r‖A1(D).

For positive η and 0 < r < 1, let Eg (r , η) denote the set

Eg (r , η) := {ζ ∈ T : Re(ζg(rζ)) ≥ η}.

Corollary 4
If we put

h(ζ) :=
1Eg (r ,η)
|Eg (r , η)|s

,

extended harmonically to the interior, then

η ≤ ‖µ‖L∞(D)‖(∂h)r‖A1(D).



The norm of the dilate in A1(D)

We will assume, without loss of generality, that ‖µ‖L∞(D) = 1. We will
need to estimate ‖(∂h)r‖A1(D), provided h ≥ 0 with h(0) = 1 (so that h
defines a probability density on the circle T).
From the Cauchy-Schwarz inequality we know that∫

D
|(∂h)(rz)|dA(z) =

1
r2

∫
D(0,r)

|∂h(z)|dA(z)

≤ 1
r2

{∫
D(0,r)

h(z)dA(z)

1− |z |2

}1/2{∫
D(0,r)

|∂h(z)|2

h(z)
(1− |z |2)dA(z)

}1/2

=
h(0)1/2

r2

{∫
D(0,r)

dA(z)

1− |z |2

}1/2{∫
D(0,r)

|∂h(z)|2

h(z)
(1− |z |2)dA(z)

}1/2

=
1
r2

{
log

1
1− r2

}1/2{∫
D(0,r)

|∂h(z)|2

h(z)
(1− |z |2)dA(z)

}1/2

. (2)

So, it remains to control the last integral in (2).



The key estimate

KEY ESTIMATE (Anentropy bound)
For h ≥ 0 bounded and harmonic in D with h(0) = 1, we have that∫

D(0,r)

|∂h(z)|2

h(z)
(1− |z |2)dA(z) ≤

∫
T
h log h ds.

Remark
This estimate is very sharp. We will not explain the proof of this bound
here.



Consequence of the key estimate

Corollary 5
If h is as in Corollary 4, and ‖µ‖L∞(D) = 1, then

η ≤ 1
r2

{
log

1
1− r2

}1/2{∫
T
h log h ds

}1/2

=
1
r2

{
log

1
1− r2

}1/2{
log

1
|Eg (r , η)|s

}1/2

.

Remark
(Weak type bound) In other words, we obtain an estimate of the length
of the set

Eg (r , η) = {ζ ∈ T : Re(ζg(rζ)) ≥ η},
which reads

|Eg (r , η)|s ≤ exp
{
− r4η2

log 1
1−r2

}
. (3)

This is Gaussian tail behavior.



From weak to strong type bound

We can turn the weak type bound into a strong type bound, at a small
cost.

MAIN THEOREM
Suppose g = Pµ where ‖µ‖L∞(D) = 1, and let

Ig (a, r) :=

∫
T
exp

{
a
r4|g(rζ)|2

log 1
1−r2

}
ds(ζ),

for a ≥ 0 and 0 < r < 1.
(a) If 0 ≤ a < 1, we have that Ig (a, r) ≤ C (a) independently of µ and r ,
where C (a) := 10(1− a)−3/2.
(b) If a > 1, there exists µ0 with ‖µ0‖L∞(D) = 1 such that with
g0 := Pµ0, Ig0(a, r)→ +∞ as r → 1−.

Remark
For 0 < a < π2

64 = 0.154 . . ., the bound (with another constant) follows
from an estimate of Makarov (see [Mak] and [Pombk], p. 186, p. 188).



The case (b) of the main theorem

The function µ0 is explicit,

µ0(z) :=
1− z̄
1− z

,

so that its Bergman projection may be calculated:

Pµ0(z) =
1
z2 log

1
1− z

− 1
z
.

The assertion is now just a matter of direct verification.



Interpretation as asymptotic tail variance

Consider
Xr (ζ) :=

r2g(rζ)

log 1
1−r2

, ζ ∈ T,

as a random variable which is an almost rotationally-invariant complex
Gaussian. This allows us to define the asymptotic tail variance:

atvar g := inf
{
τ > 0 : lim sup

r→1−
E e|Xr |2/τ < +∞

}
This tail variance should be compared with the asymptotic variance of
McMullen [McM].

Remark
Similar tail variances can be defined for individual probability distributions
on the plane C or on the line R.



Consequences for the integral means spectrum of conformal
mappings with quasiconformal extension

We recall that B(k, t) is the universal integral means spectrum for
conformal mappings of the exterior disk preserving the point at infinity,
having a k-quasiconfrmal extension to the whole plane.

MAIN COROLLARY
We have that

B(k, t) ≤

{
1
4k

2|t|2(1 + 7k)2, |t| ≤ 2
k(1+7k)2 ,

k |t| − 1
(1+7k)2 , |t| ≥ 2

k(1+7k)2 .

Remark
Prause and Smirnov [PS] conjecture that this estimate is an equality, if
the expression (1 + 7k)2 everywhere gets replaced by 1. For small k , we
are therefore very close to the conjectured value.



Application to the dimension of quasicircles

To test the power of the main corollary, we observe that together with
Pommerenke’s ([Pombk], p. 241) dimension formula, and a
symmetrization procedure which apparently originates with Kühnau. Let
D(k) denote the maximal (Minkowski) dimension of the image of the
unit circle under a k-quasiconformal mapping.

SECONDARY COROLLARY
We have that

D(k) ≤ 1 + k2 + O(k3).

Remark
This should be compared with Smirnov’s theorem D(k) ≤ 1 + k2 (see
[Sm]).
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