Holomorphic self-maps of the unit disc with two fixed points

Victor V. Goryainov

Moscow Institute of Physics and Technology (State University) (Russia)

Victor V. Goryainov

(ロ) (部) (注) (注)

MIPT

Let \mathfrak{P} be the set of all functions f holomorphic in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and taking values in \mathbb{D} , that is, $f(\mathbb{D}) \subset \mathbb{D}$.

The aim of the present note is to study the case when f in \mathfrak{P} has two fixed points.

We point out first that if f belongs to \mathfrak{P} and $f(z) \not\equiv z$, then by the hyperbolic metric principle there can be at most one fixed point in \mathbb{D} . On the other hand, a function f in \mathfrak{P} may have fixed points at the boundary $\partial \mathbb{D}$ of the unit disc \mathbb{D} . We recall that a point $\varkappa \in \partial \mathbb{D}$ (that is, $|\varkappa| = 1$) is said to be a fixed point for $f \in \mathfrak{P}$ if

$$\lim_{r\to 1}f(r\varkappa)=\varkappa.$$

Victor V. Goryainov

It is a remarkable fact that the angular derivative

$$f'(arkappa) = \angle \lim_{z o arkappa} rac{f(z) - arkappa}{z - arkappa}$$

at a boundary fixed point \varkappa always exists and $f'(\varkappa)$ is equal to either $+\infty$ or a positive real number.

If it is finite, f'(z) has the same angular limit. The symbol $\angle \lim_{z \to \varkappa}$ means that z stays within an angle at \varkappa less than π , and the limit is referred to as an angular limit.

For convenience, we have normalized the function $f \in \mathfrak{P}$ so that its fixed points are 0 and 1 or -1 and 1.

< ロ > < 同 > < 回 > < 回 >

In this connection we single out the class $\mathfrak{P}[0,1]$ of mappings $f: \mathbb{D} \mapsto \mathbb{D}$ that fix both the origin (that is, f(0) = 0) and the boundary point z = 1 in the sense of the angular limit and have a finite angular derivative at z = 1.

Analogously, we denote the class of functions f in \mathfrak{P} that fix points $z = \pm 1$ and have finite angular derivatives f'(-1), f'(1) by $\mathfrak{P}[-1,1]$.

(日) (同) (三) (三)

It is a consequence of the Julia-Carathéodory theorem that $f'(1) \ge 1$ for any function f in $\mathfrak{P}[0,1]$. Moreover, the equality f'(1) = 1 is possible only if $f(z) \equiv z$.

Note that if f in $\mathfrak{P}[0,1]$ is univalent and $f'(1) = \alpha > 1$ then

 $|f'(0)| \geq 1/\alpha^2.$

This result has been obtained by many authors using a variety methods (Solynin, Pommerenke and Vasil'ev, Dubinin and Kim, Anderson and Vasil'ev).

The following result gives detailed information on the values f'(0), f''(0), f'(1) in the class $\mathfrak{P}[0, 1]$.

(日) (四) (王) (王)

MIPT

Theorem (1)

Let $f(z) = c_1 z + c_2 z^2 + \ldots$ be in $\mathfrak{P}[0; 1]$ and $f'(1) = \alpha > 1$. Then

$$\left| c_1 - rac{1}{lpha}
ight| \, \leq \, rac{lpha - 1}{lpha}, \qquad \left| c_2 - rac{(c_1 - 1)^2}{lpha - 1}
ight| \, \leq \, 1 - rac{|lpha c_1 - 1|^2}{(lpha - 1)^2},$$

and $c_1 \neq 1$.

Note that the inequality

$$\left|f'(0) - \frac{1}{\alpha}\right| \le \frac{\alpha - 1}{\alpha}$$

implies for $lpha \in (1,2)$ the following

 $|f'(0)| \geq (2-\alpha)/\alpha.$

This means that when f'(1) belongs to interval (1, 2) the function f is locally univalent at the origin.

Victor V. Goryainov

MIPT

Theorem (1)

Let $f(z) = c_1 z + c_2 z^2 + \ldots$ be in $\mathfrak{P}[0; 1]$ and $f'(1) = \alpha > 1$. Then

$$\left| \mathsf{c}_1 - rac{1}{lpha}
ight| \, \leq \, rac{lpha - 1}{lpha}, \qquad \left| \mathsf{c}_2 - rac{(\mathfrak{c}_1 - 1)^2}{lpha - 1}
ight| \, \leq \, 1 - rac{|lpha \mathsf{c}_1 - 1|^2}{(lpha - 1)^2},$$

and $c_1 \neq 1$.

Note that the inequality

$$\left|f'(0) - \frac{1}{\alpha}\right| \leq \frac{\alpha - 1}{\alpha}$$

implies for $\alpha \in (1,2)$ the following

$$f'(0)| \geq (2-\alpha)/\alpha.$$

This means that when f'(1) belongs to interval (1,2) the function f is locally univalent at the origin.

Victor V. Goryainov

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

3

MIPT

Thus, the value f'(1) = 2 is critical.

The result of the following theorem is more informative.

Theorem (2)

Let f be in $\mathfrak{P}[0,1]$ and $f'(1) = \alpha$, $1 < \alpha < 2$. Then f is univalent in the domain

$$A_{M} = \{ z \in \mathbb{D} : |1 - z| < M(1 - |z|) \},\$$

where $M = 1/\sqrt{\alpha - 1}$.

Note that A_M contains the disc

$$|z| < \frac{1 - \sqrt{\alpha - 1}}{1 + \sqrt{\alpha - 1}}$$

Victor V. Goryainov

Class $\mathfrak{P}[0,1]$

Class $\mathfrak{P}[-1, 1]$

Moreover, for $\alpha \in (1,2)$ the function

$$f(z) = z \frac{\alpha z + (2 - \alpha)}{\alpha + (2 - \alpha)z}$$

belongs to $\mathfrak{P}[0,1]$ and $f'(1) = \alpha$. Also, the point

$$z_{lpha} = -rac{1-\sqrt{lpha-1}}{1+\sqrt{lpha-1}}$$

lies on ∂A_M , $M = 1/\sqrt{\alpha - 1}$, and $f'(z_\alpha) = 0$.

This implies that the parameter M of the domain A_M in Theorem 2 is the best possible.

<ロ> <回> <回> <回> <回> < 回>

・ロット 全部 マート・トロッ

MIPT

A description of class $\mathfrak{P}[0,1]$ can be obtained by using a result, which is due to R. Nevanlinna.

A function f holomorphic in \mathbb{D} belongs to $\mathfrak{P}[0,1]$ if and only if the function $h_f(z) = (1 + f(z))/(1 - f(z))$ admits a representation

$$h_f(z) = \lambda rac{1+z}{1-z} + (1-\lambda) \int\limits_{\mathbb{T}} rac{1+arkappa z}{1-arkappa z} d\mu(arkappa)$$

for some probability measure μ on the unit circle $\mathbb{T} = \partial \mathbb{D}$ with $\mu(\{1\}) = 0$, and $\lambda \in (0, 1)$.

Note that the measure

$$\widetilde{\mu} = \lambda \delta_1 + (1 - \lambda) \mu$$

is so-called Aleksandrov–Clark measure of f at the point $\zeta = 1$.

Victor V. Goryainov

Now we consider the case when f fixes two boundary points z = 1 and z = -1.

Suppose that f belongs to $\mathfrak{P}[-1,1]$. By the Julia-Carathéodory theorem we have the inequality $f'(-1)f'(1) \ge 1$. Moreover, the equality f'(-1)f'(1) = 1 is possible only if f is a linear fractional transformation of the unit disc onto itself.

The following theorem gives a description of the class $\mathfrak{P}[-1,1]$.

(ロ) (部) (注) (注)

Theorem (3)

Let f be in $\mathfrak{P}[-1;1]$ and $f'(-1) = \varrho$, $f'(-1)f'(1) = \alpha > 1$. Then the function h(z) = (1 + f(z))/(1 - f(z)) admits a representation in the form

$$h(z) = \varrho \left\{ \lambda \frac{1+z}{1-z} + (1-\lambda) \frac{1+z}{2} \int_{\mathbb{T}} \frac{1+\varkappa}{1-\varkappa z} d\mu(\varkappa) \right\} \quad (1)$$

where $\lambda = 1/\alpha$ and μ is a probability measure on \mathbb{T} with $\mu(\{-1,1\}) = 0$. Conversely, if $\varrho > 0$, $0 < \lambda < 1$, and μ is a probability measure on \mathbb{T} with $\mu(\{-1,1\}) = 0$, then the function h(z) in (1) is holomorphic in \mathbb{D} with positive real part, and f(z) = (h(z) - 1)/(h(z) + 1) belongs to $\mathfrak{P}[-1,1]$ with $f'(-1) = \varrho$, $f'(-1)f'(1) = 1/(\lambda\varrho)$.

э

イロト イポト イヨト イヨト

			luction				

Class $\mathfrak{P}[0, 1]$

Class $\mathfrak{P}[-1, 1]$

Remark

A positive Borel measure ν on \mathbb{T} is an Aleksandrov–Clark measure of a function f in $\mathfrak{P}[-1; 1]$ with $f'(-1) = \varrho$, $f'(-1)f'(1) = \alpha > 1$ at the point 1, if and only if it admits a representation

$$\nu = \frac{\varrho}{\alpha}\delta_1 + \frac{\varrho(\alpha - 1)}{\alpha}\widetilde{\mu},$$

where

$$d\widetilde{\mu}(arkappa) \,=\, rac{1}{2}(1+\operatorname{Re}arkappa)d\mu(arkappa), \qquad \qquad arkappa \in \mathbb{T},$$

and μ is a probability measures on \mathbb{T} with $\mu(\{-1,1\}) = 0$.

Victor V. Goryainov

Holomorphic self-maps of the unit disc

イロト イポト イヨト イヨト

For $\alpha,\beta>$ 0 that satisfy the inequality $\alpha\beta>$ 1 we consider the set

$$\mathcal{D}(\alpha,\beta) = \{(f(0),f'(0)): f \in \mathfrak{P}[-1,1], f'(1) = \alpha, f'(-1) = \beta\}.$$

Theorem (4)

Let $\alpha, \beta > 0$ and $\alpha\beta > 1$. Then a necessary and sufficient condition for a point (w, ζ) in \mathbb{C}^2 to lie in the set $\mathcal{D}(\alpha, \beta)$ is that

$$\begin{split} |w - \theta| &\leq \tau, \qquad w \neq \theta \pm \tau, \\ \left| \zeta - \frac{\alpha + \beta + 2}{\alpha\beta - 1} \left(w - \frac{\beta - \alpha}{\alpha + \beta + 2} \right)^2 - \frac{4}{\alpha + \beta + 2} \right| \\ &\leq \frac{1}{\tau} (\tau^2 - |w - \theta|^2), \\ \theta &= \frac{\beta - \alpha}{(\alpha + 1)(\beta + 1)}, \qquad \tau = \frac{\alpha\beta - 1}{(\alpha + 1)(\beta + 1)}. \end{split}$$

Victor V. Goryainov

Theorem (5)

Let f belongs to $\mathfrak{P}[-1,1]$ and $f'(1)f'(-1) = \alpha$, $1 < \alpha < 2$. Then f is univalent in the domain

$$\Delta_M \ = \ \left\{z\in\mathbb{D}\colon \ rac{|1-z^2|}{1-|z|^2} \ < \ M
ight\},$$

where $M = 1/\sqrt{\alpha - 1}$.

Note that the parameter M of the domain Δ_M in Theorem 5 is the best possible. The boundary $\partial \Delta_M$ is a closed curve consisting of two arcs of circles which pass through +1 and -1.

イロト イポト イヨト イヨト

Theorem (5)

Let f belongs to $\mathfrak{P}[-1,1]$ and $f'(1)f'(-1) = \alpha$, $1 < \alpha < 2$. Then f is univalent in the domain

$$\Delta_M \ = \ \left\{z\in\mathbb{D}\colon \ rac{|1-z^2|}{1-|z|^2}\ <\ M
ight\},$$

where $M = 1/\sqrt{\alpha - 1}$.

Note that the parameter M of the domain Δ_M in Theorem 5 is the best possible. The boundary $\partial \Delta_M$ is a closed curve consisting of two arcs of circles which pass through +1 and -1.

◆□ > ◆□ > ◆豆 > ◆豆 >

Victor V. Goryainov Holomorphic self-maps of the unit disc