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Introduction Class P[0, 1] Class P[−1, 1] Thanks

Let P be the set of all functions f holomorphic in the unit disc
D = {z ∈ C : |z | < 1} and taking values in D, that is, f (D) ⊂ D.

The aim of the present note is to study the case when f in P has
two fixed points.

We point out first that if f belongs to P and f (z) 6≡ z , then by the
hyperbolic metric principle there can be at most one fixed point in
D. On the other hand, a function f in P may have fixed points at
the boundary ∂D of the unit disc D. We recall that a point κ ∈ ∂D
(that is, |κ| = 1) is said to be a fixed point for f ∈ P if

lim
r→1

f (rκ) = κ.
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It is a remarkable fact that the angular derivative

f ′(κ) = ∠ lim
z→κ

f (z)− κ
z − κ

at a boundary fixed point κ always exists and f ′(κ) is equal to
either +∞ or a positive real number.

If it is finite, f ′(z) has the same angular limit. The symbol
∠ limz→κ means that z stays within an angle at κ less than π, and
the limit is referred to as an angular limit.

For convenience, we have normalized the function f ∈ P so that its
fixed points are 0 and 1 or −1 and 1.
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In this connection we single out the class P[0, 1] of mappings
f : D 7→ D that fix both the origin (that is, f (0) = 0) and the
boundary point z = 1 in the sense of the angular limit and have a
finite angular derivative at z = 1.

Analogously, we denote the class of functions f in P that fix points
z = ±1 and have finite angular derivatives f ′(−1), f ′(1) by
P[−1, 1].
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It is a consequence of the Julia-Carathéodory theorem that
f ′(1) ≥ 1 for any function f in P[0, 1]. Moreover, the equality
f ′(1) = 1 is possible only if f (z) ≡ z .

Note that if f in P[0, 1] is univalent and f ′(1) = α > 1 then

|f ′(0)| ≥ 1/α2.

This result has been obtained by many authors using a variety
methods (Solynin, Pommerenke and Vasil’ev, Dubinin and Kim,
Anderson and Vasil’ev).

The following result gives detailed information on the values
f ′(0), f ′′(0), f ′(1) in the class P[0, 1].
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Theorem (1)

Let f (z) = c1z + c2z
2 + . . . be in P[0; 1] and f ′(1) = α > 1. Then∣∣∣∣c1 − 1

α

∣∣∣∣ ≤ α− 1

α
,

∣∣∣∣c2 − (c1 − 1)2

α− 1

∣∣∣∣ ≤ 1− |αc1 − 1|2

(α− 1)2
,

and c1 6= 1.

Note that the inequality∣∣∣∣f ′(0)− 1

α

∣∣∣∣ ≤ α− 1

α

implies for α ∈ (1, 2) the following

|f ′(0)| ≥ (2− α)/α.

This means that when f ′(1) belongs to interval (1, 2) the function
f is locally univalent at the origin.
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Thus, the value f ′(1) = 2 is critical.

The result of the following theorem is more informative.

Theorem (2)

Let f be in P[0, 1] and f ′(1) = α, 1 < α < 2. Then f is univalent
in the domain

AM = {z ∈ D : |1− z | < M(1− |z |)},

where M = 1/
√
α− 1.

Note that AM contains the disc

|z | < 1−
√
α− 1

1 +
√
α− 1

.
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Moreover, for α ∈ (1, 2) the function

f (z) = z
αz + (2− α)

α + (2− α)z

belongs to P[0, 1] and f ′(1) = α. Also, the point

zα = −1−
√
α− 1

1 +
√
α− 1

lies on ∂AM , M = 1/
√
α− 1, and f ′(zα) = 0.

This implies that the parameter M of the domain AM in Theorem 2
is the best possible.
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A description of class P[0, 1] can be obtained by using a result,
which is due to R. Nevanlinna.

A function f holomorphic in D belongs to P[0, 1] if and only if the
function hf (z) = (1 + f (z))/(1− f (z)) admits a representation

hf (z) = λ
1 + z

1− z
+ (1− λ)

∫
T

1 + κz
1− κz

dµ(κ)

for some probability measure µ on the unit circle T = ∂D with
µ({1}) = 0, and λ ∈ (0, 1).

Note that the measure

µ̃ = λδ1 + (1− λ)µ

is so-called Aleksandrov–Clark measure of f at the point ζ = 1.
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Now we consider the case when f fixes two boundary points z = 1
and z = −1.

Suppose that f belongs to P[−1, 1]. By the Julia-Carathéodory
theorem we have the inequality f ′(−1)f ′(1) ≥ 1. Moreover, the
equality f ′(−1)f ′(1) = 1 is possible only if f is a linear fractional
transformation of the unit disc onto itself.

The following theorem gives a description of the class P[−1, 1].
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Theorem (3)

Let f be in P[−1; 1] and f ′(−1) = %, f ′(−1)f ′(1) = α > 1. Then
the function h(z) = (1 + f (z))/(1− f (z)) admits a representation
in the form

h(z) = %

λ1 + z

1− z
+ (1− λ)

1 + z

2

∫
T

1 + κ
1− κz

dµ(κ)

 (1)

where λ = 1/α and µ is a probability measure on T with
µ({−1, 1}) = 0. Conversely, if % > 0, 0 < λ < 1, and µ is a
probability measure on T with µ({−1, 1}) = 0, then the function
h(z) in (1) is holomorphic in D with positive real part, and
f (z) = (h(z)− 1)/(h(z) + 1) belongs to P[−1, 1] with f ′(−1) = %,
f ′(−1)f ′(1) = 1/(λ%).
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Remark

A positive Borel measure ν on T is an Aleksandrov–Clark measure
of a function f in P[−1; 1] with f ′(−1) = %, f ′(−1)f ′(1) = α > 1
at the point 1, if and only if it admits a representation

ν =
%

α
δ1 +

%(α− 1)

α
µ̃,

where

d µ̃(κ) =
1

2
(1 + Reκ)dµ(κ), κ ∈ T,

and µ is a probability measures on T with µ({−1, 1}) = 0.
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For α, β > 0 that satisfy the inequality αβ > 1 we consider the set

D(α, β) = {(f (0), f ′(0)) : f ∈ P[−1, 1], f ′(1) = α, f ′(−1) = β}.

Theorem (4)

Let α, β > 0 and αβ > 1. Then a necessary and sufficient condition
for a point (w , ζ) in C2 to lie in the set D(α, β) is that

|w − θ| ≤ τ, w 6= θ ± τ,∣∣∣∣∣ζ − α + β + 2

αβ − 1

(
w − β − α

α + β + 2

)2

− 4

α + β + 2

∣∣∣∣∣
≤ 1

τ
(τ2 − |w − θ|2),

θ =
β − α

(α + 1)(β + 1)
, τ =

αβ − 1

(α + 1)(β + 1)
.
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Theorem (5)

Let f belongs to P[−1, 1] and f ′(1)f ′(−1) = α, 1 < α < 2. Then
f is univalent in the domain

∆M =

{
z ∈ D :

|1− z2|
1− |z |2

< M

}
,

where M = 1/
√
α− 1.

Note that the parameter M of the domain ∆M in Theorem 5 is the
best possible. The boundary ∂∆M is a closed curve consisting of
two arcs of circles which pass through +1 and −1.
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