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2D ISING MODEL: DISCRETE HOLOMORPHICITY,
ORTHOGONAL POLYNOMIALS
AND CONFORMAL INVARIANCE

e Nearest-neighbor Ising model in 2D
o dimers and Kac—Ward matrices

o fermionic observables

o discrete holomorphicity at criticality

e Spin correlations via spinor observables
o definition of spinor observables

o full-plane spinors and formulas for
“diagonal” spin-spin expectations in Z?
e Conformal covariance at criticality

o Riemann boundary value problems
for holomorphic spinors in continuum

o Explicit formulas (CFT prediction)

o Convergence (Ch.—Hongler—Izyurov) © Clément Hongler (EPFL)




Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G* (dual to G) is
a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G* (dual to G) is
a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?

[sample of a honeycomb percolation]



Nearest-neighbor Ising or Lenz-Ising model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?
A: ..according to the following probabilities:

P [conf. o€ {il}V(G*)] o exp [ﬂz () uquUv]

X H (uv):ouoy Xuv

where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].



Nearest-neighbor Ising or Lenz-Ising model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?
A: ..according to the following probabilities:

P [conf. o€ {il}V(G*)] X exp [BZ () uquUv]
X H (uv):ouoy Xuv
where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].
e |t is also convenient to use the parametrization x,, = tan( Ou).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,,, are equal to each other.



Nearest-neighbor Ising or Lenz-Ising model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Disclaimer:
no external magnetic field.

P [conf. o€ {il}V(G*)] o exp [ﬂz () uquUv]
X H (uv):ouoy Xuv
where J,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—28J,,].
e |t is also convenient to use the parametrization x,, = tan( Ou).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,,, are equal to each other.



Phase transition (e.g., on Z?)

E.g., Dobrushin boundary conditions: +1 on (ab) and —1 on (ba):

X < Xerit X = Xcrit X > Xerit

e Ising (1925): no phase transition in 1D ~~ doubts about 2+D;
e Peierls (1936): existence of the phase transition in 2D;

o Kramers-Wannier (1941): Xeelf-dual = V2 — 1 = tan(% -3

e Onsager (1944): sharp phase transition at xgit = v/2 — 1.



At criticality (e.g., on Z?):

o Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent % for the magnetization
(some spin correlations in Z? at x 1 Xerit)-

o At criticality, for Qs — Q and us —> v € Q,
it should be Eq,[o,,] = 5% as § — 0.

X = Xcrit



At criticality (e.g., on Z?):

o Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent % for the magnetization
(some spin correlations in Z? at x 1 Xerit)-

o At criticality, for Qs — Q and us —> v € Q,
it should be Eq,[o,,] = 58 as & — 0.

e Question for the part #2:
Classical formulas for “diagonal” spin-spin
expectations in Z? via spinor observables X = Xerit

e Question for the part #3: Convergence and conformal
covariance of spin correlations in arbitrary planar domains:

6% - Eos[0u s - - Ousl — (0w - 0u)0 1
= {Tp(m)  Tpun)) @) - Tli=1 [¢'(us)]2



2D Ising model as a dimer model (on a non-bipartite graph)
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e Partition function Z =37 /. 3ver) []eo Xuy

(uv)iou#oy
e There exist various representa-

tions of the 2D Ising model via
dimers on an auxiliary graph
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e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf
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® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]
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2D Ising model as a dimer model (on a non-bipartite graph)
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e Partition function Z =37 /. ven) []eo

(uv)iou#oy Xuv
e There exist various representa- o l

tions of the 2D Ising model via ya @
dimers on an auxiliary graph: /]
e.g. 1-to-2IV(G)I correspondence of
{+1}V(€") with dimers on this Gf
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® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

e Kac-Ward formula (1952-..., 1999-...): 22 = det[Id — T,

T exp[2 afe, €] (XeXe/)l/2 if ¢’ prolongs e but ¢ # ¢;
e = 0 otherwise.

[ is equivalent to the Kasteleyn theorem for dimers on Gr |



2D Ising model as a dimer model (on a non-bipartite graph)
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e Partition function Z =3, 3vie") [lec )0 20, Xuv

e There exist various representa- o 1
tions of the 2D Ising model via ~ @
dimers on an auxiliary graph: ‘
e.g. 1-to-2IV(G)I correspondence of ®
{+1}V(€") with dimers on this Gf

—
@\ ©

® Kasteleyn’s theory: Z == Pf[ K ] [K= —K T is a weighted adjacency matrix of Gr]

e Note that V(Gg) = {oriented edges and corners of G}

e Local relations for the entries K;’(le and K;i of the inverse
Kasteleyn matrix: (an equivalent form of) K - K~'=Id



Fermionic observables: combinatorial definition [Smirnov '00s]

For an oriented edge a of G and a midpoint z. of another edge e,

— —Lwind(avze)
FG(av Ze) : Ma ZMGConfG(a,ze) |:€ 2 H(uv)Gw Xuv:| ’

where 77, denotes the (once and forever
fixed) square root of the direction of a.




Fermionic observables: combinatorial definition [Smirnov '00s]

For an oriented edge a of G and a midpoint z, of another edge e,

— —Lwind(avze)
FG(av Ze) : Ma ZMGConfG(a,ze) |:€ 2 H(uv)@u Xuv:| ’

where 77, denotes the (once and forever
fixed) square root of the direction of a.

i

e The factor e™2 does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..

wind(a~ze)

e When both a and e are "boundary”
edges, the factor ﬁae_éwmd("’”h) =47,
is fixed and Fg(a, ze) becomes the parti-
tion function of the Ising model (on G*)
with Dobrushin boundary conditions.




Fermionic observables [Smirnov’00s]: local relations

e Definition:

= — Lwind(a~ze)
FG(a; Ze) = T, ZWECOnfg(a,ze) |:e 2 H(uv)Ew Xuv:| .

e Claim: Fg(a,c) = e £5(0e—a(cre)) . Proj[ Fg(a,ze); eT2 een ]




Fermionic observables [Smirnov’00s]: local relations

e Definition:

= — Lwind(a~ze)
FG(a; Ze) = N, ZWECOnfg(a,ze) |:e 2 H(uv)Ew Xuv:| .

e Claim: Fg(a,c) = e £5(0e—a(cre)) . Proj[ Fg(a,ze); eT2 9517 ]

e S-holomorphicity (special self-dual weights on isoradial graphs):

FG(aa C) — PI‘Oj[F(;(a, Ze) 5 ﬁc]
provided each edge e of G is a diagonal of a
rhombic tile with half-angle 8, and the Ising
model weights are given by x. = tan(%@e).

e = critical weights on regular grids:
— square: Xqit = tang = V2 -1,
— honeycomb: x.it = tan ¢ = 1/V3, ...




Fermionic observables [Smirnov’00s]: local relations

e Definition:

= — Lwind(a~ze)
FG(a; Ze) = N, ZUJECOnfg(a,ze) |:e 2 H(uv)Ew Xuv:| .

e Claim: Fg(a,c) = e £5(0e—a(cre)) . Proj[ Fg(a,ze); eT2 9517 ]

e S-holomorphicity (special self-dual weights on isoradial graphs):

FG(aa C) — PI‘Oj[F(‘;(a, Ze) 5 ﬁc]
provided each edge e of G is a diagonal of a
rhombic tile with half-angle 8, and the Ising
model weights are given by x. = tan(%@e).
e Via dimers on Gr: Fg(a,c) = 7. K}

Fe(a ze) =KoL + MK,




Fermionic observables [Smirnov’00s]: local relations

e Definition:
= — Lwind(a~ze)
FG(a7 Ze) - 773 Zweconfc(a7ze) |:e 2 H<uv>€w XUV} .

e Claim: Fg(a,c) = e £5(0e—a(cre)) . Proj[ Fg(a,ze); eT2 9517 ]

e S-holomorphicity (special self-dual weights on isoradial graphs):

FG(aa C) — PI‘Oj[F(‘;(a, Ze) 5 ﬁc]
provided each edge e of G is a diagonal of a
rhombic tile with half-angle 8, and the Ising
model weights are given by x. = tan(%@e).

e Fermionic observables per se are useful
but do not allow to analyze the spin corre-
lations: more involved ones are needed




Spinor observables and spin correlations

e spin configurations on G*
«~ domain walls on G
«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]

[K= —K T is a weighted adjacency matrix of G ]
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e Claim:
Pf[ K[ul,...,u,,] ]

Pf[K]
where Ky, .. u, is obtained from K by changing the sign of its
entries on slits linking vy, ..., u, (and, possibly, uy,) pairwise.

Elow - 0u,] =



Spinor observables and spin correlations

e spin configurations on G*
«~ domain walls on G
«~ dimers on Gfr
e Kasteleyn’s theory: Z =Pf[K]

[K=—K T isa weighted adjacency matrix of Gf |

ulo

e Claim:
Pf[ K[ul,...,u,,] ]

Pf[K]
where Ky, .. u, is obtained from K by changing the sign of its
entries on slits linking uy, ..., u, (and, possibly, uy,) pairwise.

Elow - 0u,] =

e More invariant way to think about entries of K[_ul1 e

double-covers of G branching over uy,...,u,



Spinor observables and spin correlations

Main tool: spinors on the double cover [Q2s;uy,. .., ug].

-1 edges(w
Fo, (2) = (28 [ow 0wl ] Y bu (w,2) x5

crit ’
—
wGConf96 (u1 7z)

Buy o (w0, 2) 1= €7 3R (1) #loons@\P)). gheet (p (w) , 2).

e wind (p(v)) is the winding of

T . _ é .
(\/></ﬁ>%, the path p(v) : uy” = 1 +5~2z;
X e #loops — those containing an
odd number of uq, ..., u, inside;

e sheet (p(vy),z) = +1, if p(v)
defines z, and —1 otherwise.




Spinor observables and spin correlations

Main tool: spinors on the double cover [Q2s;uy,. .., ug].

-1 edges(w
Fo, (2) = (28 [ow 0wl ] Y upu, (w,2) xEES),

wGCoan(s(uf‘, z)

Guy,un (W, 2) = e~ zwind(p(w)) | (—1)#1O°ps(w\p(w))- sheet (p (w), 2).

e wind (p(v)) is the winding of
P the path p(v) : u7” = ul—i—ng;
\ e #loops — those containing an
odd number of uq, ..., u, inside;

e sheet (p(vy),z) = +1, if p(v)
defines z, and —1 otherwise.

Egé [Ou+25---0u,)

e Claim: Fq,(u+%)
’ 2 E;‘z_a [Ou ---0u,)




“Diagonal” correlations in Z2: classical computation revisited
Let x=tan %9 < Xerit =tan g and Dy (x) := Ece[0(0,0y0(2n,0)]
where C® = {(k,s) : k,s € Z, k+s € 2Z} is the Z-rotated Z2.
Theorem: [B.Kaufman-L.Onsager'48-49, C.N.Yang'52]

lim,_ o0 Dy(x) = (1 —tan* 0)% ~ const - (xcrit—x)% for x < Xerit

[T.T.Wu'66] Dy (xerst) = (2)" TI2Z1 (1—7%)° "~ const - (2m)

s

Classical reference for many explicit computations:

B.M. McCoy and T.T. Wu “The two-dimensional Ising model”




“Diagonal” correlations in Z2: classical computation revisited
Let x=tan %9 < Xerit =tan g and Dy (x) := Ece[0(0,0y0(2n,0)]
where C® = {(k,s) : k,s € Z, k+s € 2Z} is the Z-rotated Z2.
Theorem: [B.Kaufman-L.Onsager'48-49, C.N.Yang'52]

lim,_ o0 Dy(x) = (1 —tan* 0)% ~ const - (xcrit—x)% for x < Xerit

Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]

Onsager: ... I have found a general formula for the
evaluation of Toeplitz matrices. The only thing I
did not know was how to fill out the holes in the
mathematics and show the epsilons and the deltas and
all of that.




“Diagonal” correlations in Z2: classical computation revisited
Let x=tan %9 < Xerit =tan g and Dy (x) := Ece[0(0,0y0(2n,0)]
where C® = {(k,s) : k,s € Z, k+s € 2Z} is the Z-rotated Z2.
Theorem: [B.Kaufman-L.Onsager'48-49, C.N.Yang'52]

lim,_ o0 Dy(x) = (1 —tan* 0)% ~ const - (xcrit—x)% for x < Xerit

Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]

Onsager: ... I have found a general formula for the
evaluation of Toeplitz matrices. The only thing I
did not know was how to fill out the holes in the
mathematics and show the epsilons and the deltas and
all of that.

. we talked to Kakutani and Kakutani talked
to Szego, and the mathematicians got there first.
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Let x=tan %0 < Xait=tan g and D, 11(x) 3:E<C°[U(_g,o)‘7(2n+%,o)]




“Diagonal” correlations in Z?: classical computation revisited
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Local relations Fco(d) — 7> 5 gFce(d’) = 0, m = sin (26)



“Diagonal” correlations in Z?: classical computation revisited

Let x=tan %6’ < Xait=tan g and D,,+1(X)::IE(C<>[U(_%’O) (2n+1 0)]

Local relations Fco(d) — 7> 5 gFce(d’) = 0, m = sin (26)
For s > 0, denote Q, s(e™) := D1 - Y o keTktse2r, e%iktFCo(k, s)

Then local relations (massive harmonicity) can be rewritten as

Qn,s(eit) = (% cos %) : (Qn,s—l(eit) + Qn,s—i—l(eit))y s> 1.



“Diagonal” correlations in Z?: classical computation revisited

Let x=tan %6’ < Xait=tan g and D, 11(x) ::E(C°[U(—§,0)U(2n+%,o)]

Local relations Fco(d) — 7> 5 gFce(d’) = 0, m = sin (26)

For s > 0, denote Q, s(e™) := D1 - Y o keTktse2r, e%iktFCo(k, s)

. _(1— £y2)3 .
Boundedness as s — 0o = Qn1(e") = [M] Qnol(e™)

t
mcos 3



“Diagonal” correlations in Z?: classical computation revisited

Let x=tan %6’ < Xait=tan g and Dn+1(x)::ECo[a(_%’o) (2n+1 0)]

Gesssades
6@ 6 o 56 56

Combinatorics of spinor observables = the following values on R:

Qn(eit) = Qn,O(el:t): 0 + Dn +...+ D;eint' + 0
W(t)Qn(elt) = ...+ Dn+1 + 0 + quf;He’”t + ...,

where w(t) = |1—q%e| and g :=tanf < 1



“Diagonal” correlations in Z?: classical computation revisited

1 .
Let x=tan 56 < Xcrit =tan § and Dn+1(x).:ECo[a(_%’o) (2n+1 0)]

o Xa bl > X6 Xa > 6

The values of this full-plane spinor observable on the real line are
coefficients of a certain orthogonal polynomial (Legendre if X=Xerit)

BT A7T5% pvave

Combinatorics of spinor observables = the following values on R:

Qn(eit) = Qn,O(el:t): 0 + Dn + ...+ D;eint' + 0
W(t)Qn(elt) = ...+ Dn+1 + 0 + qu:_i_lemt + ...,

where w(t) = |1—q%e| and g :=tanf < 1



Conformal covariance of spin correlations at criticality

e Three primary fields: - .
1, o (spin), € (energy density); Conformal
Scaling exponents: 0, 3, 1 jietd Theos

e CFT prediction:

If Q5+ Q and ugs— uy as & — 0, then @%ﬁ
_n + =
) B‘E&;[aum ...O‘un,a] 6:>0 Co 0w+ Ouy) gy b

where C, is a lattice-dependent constant,
1
<UU1 s Uun>—iQ_ = <U<p(u1) cee Ugo(un)>3/ 'ngl ‘SOI(US)‘ 8
for any conformal mapping ¢ : Q — @/, and

[(a’ul...aun)ﬁ]z = H (2Im us)™ 4><Z H

1<s<n pe{+1}n s<m

Hsim
2

Us—Um

Us—



Conformal covariance of spin correlations at criticality
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e Three primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, 3, 1

e Theorem: [Ch.—Hongler-Izyurov] <
If Q5 —Q and uy 5— ug as & — 0, then
_n +
) 8'E$5[0u1,5 e O‘un,é] 6:>0 Co 0w+ Ouy) gy
where C, is a lattice-dependent constant,
1
<UU1 e O'Un>—iQ_ = <O'ga(u1) e Ugo(un)>g/ 'ngl ‘SOI(US)‘ 8
for any conformal mapping ¢ : Q — @/, and

[(o’ul...aun)ﬂﬂ']z = H (2Im us)™ 4><Z H

1<s<n pe{+1}n s<m

Hsim

Us—Um Um 2




Conformal covariance of spin correlations at criticality

000000000
() S0

e Three primary fields: Lho
1, o (spin), € (energy density); @
Scaling exponents: 0, 3, 1.

e Theorem: [Ch.—Hongler-Izyurov] <

If Q5 —Q and uy 5— ug as & — 0, then

_n
) 8‘E§5[Uu1,5 . ..O‘un,é] 6:>0 Cl{ouy «-- o'u,,}g

General strategy: e in discrete: encode spatial derivatives as
values of discrete holomorphic functions F? that solve some
discrete boundary value problems;

e discrete—continuum: prove convergence of F® to the solutions f
of the similar continuous b.v.p. [non-trivial technicalities |;

e continuum—discrete: derive the limit of correlations
from the convergence F® — f [via coefficients at singularities].




Conformal covariance of spin correlations at criticality

Example: to handle E;Eé [04], one

. . .
should consider the following b.v.p.: i "

o f(z%) = —f(2°), branches over u;
o Im[f(C)\/ (C)] =0 for ¢ € 0;
of(z)= \/—-1-




Conformal covariance of spin correlations at criticality

Example: to handle E;Eé [04], one i
.
should consider the following b.v.p.: /\V\/"" !

NS>

o f(z*) = —f(2"), branches over u;

o Im[f(C)\/n(C)} =0 for ¢ € 0;
of(z) = 2= +2Aq(u)-vVz—u+...

Z—Uu

Claim: If Qg converges to Q2 as § — 0, then
o (26)log [Egé[auﬁzg] /Egé[aué]} — Re[ Aa(u)];
o (20)"log [ES, [ouss2is] / B o] — —Tm [Aa(u)].



Conformal covariance of spin correlations at criticality

Example: to handle E$6 [04], one
should consider the following b.v.p.:

o f(z*) = —f(2"), branches over u;

o Im[f(C)\/n(C)} =0 for ¢ € 0;
of(z) = 22— +2Aq(u) - Vz—u+...

Z—Uu

Claim: If Qg converges to Q2 as § — 0, then
o (26)log [Egé[auﬁzg] /Egé[aw]} — Re[ Aa(u)];
o (20)"log [ES, [ouss2is] / B o] — —Tm [Aa(u)].
Conformal covariance % . for any conformal map ¢ : Q — €/,

o fia.q(w) = fior say(d(w)) - (&' (w))/?;
o Aq(z) = Aa(¢(2)) - ¢'(2) + 5 - ¢"(2) /¥ (2).



Conformal covariance of spin correlations at criticality

Example: to handle E;;a [04], one i
.
should consider the following b.v.p.: /\V\/""

NS>

o f(z*) = —f(2"), branches over u;

o Im[f(C)\/n(C)} =0 for ¢ € 0;
of(z) = 2= +2Aq(u)-vVz—u+...

Z—Uu

Claim: If Qg converges to Q2 as § — 0, then
o (26)log [Egé[auﬁzg] /Egé[aw]} — Re[ Aa(u)];
o (20)"log [ES, [ouss2is] / B o] — —Tm [Aa(u)].

Quite a lot of technical work is needed, e.g.:

e to handle tricky boundary conditions (Dirichlet for [ Re[f?dz]);
e to prove convergence, incl. near singularities [ complex analysis |;
e to recover the normalization of Egé [0uy--.0u,] [ probability ].



Explicit formulae for spin correlations in the general case

We define (oy, - ..o, ) ey = exp| [L(u1,...,u,)], where
Lo(ur,...,up) = 0 1 Re[Aq(us;ur,.... s, ..., up)dus],
and the multiplicative normalization is chosen so that

(OuOu)y ~ (OueOuy 1) (Oun)S as u, — 09,
(Ounoum)y ~ |u— u1|_% as up — up € Q.
Coefficients Agq (uy; U, ..., u,) are defined via the following b.v.p.:
o f(z*) = —f(2") is a holomorphic spinor on [Q; uy, ..., us];
o Tm[ £(¢)(n(¢))2] = 0 for ¢ € 99
of(z)=ics-(z— us)_% + ... for some (unknown) ¢; € R, s > 2;

of(z)=(z— Ul)_% +2Aq(u1; Uy ey up) - (2 — Ul)% +...



Explicit formulae for spin correlations in the general case

We define (oy, - ..o, ) ey = exp| [L(u1,...,u,)], where
La(ui,...,up) =01 Re[Aa(us; u1, ..., ds, ..., up)dus],
and the multiplicative normalization is chosen so that

(OuOu)y ~ (OueOuy 1) (Oun)S as u, — 09,
1
(Uu10u2>5 ~ |up— |4 as up —> up € 9.

Remarks: e The closeness of the differential form Lg , and the
existence of an appropriate multiplicative normalization are not
immediate (can be deduced along the proof of convergence);

e Similar techniques can be applied for more involved boundary
conditions and/or in the multiply connected setup (when no
explicit formulae are available), as well as to other fields.
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Tool: local relations and spinor observables are always there!

Extended version of this talk: arXiv:1605.09035

THANK YOU!



