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[ Sample of a critical 2D Ising configuration (with two disorders), c© Clément Hongler (EPFL) ]

XXV Meeting in Mathematical Analysis
Tribute to Victor Havin (1933–2015)

St. Petersburg, June 30, 2016



2D Ising model: discrete holomorphicity,
orthogonal polynomials

and conformal invariance

• Nearest-neighbor Ising model in 2D
◦ dimers and Kac–Ward matrices
◦ fermionic observables
◦ discrete holomorphicity at criticality

• Spin correlations via spinor observables
◦ definition of spinor observables
◦ full-plane spinors and formulas for
“diagonal” spin-spin expectations in Z

2

• Conformal covariance at criticality
◦ Riemann boundary value problems
for holomorphic spinors in continuum
◦ Explicit formulas (CFT prediction)
◦ Convergence (Ch.–Hongler–Izyurov) c© Clément Hongler (EPFL)



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
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[sample of a honeycomb percolation]



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

P
[

conf. σ ∈ {±1}V (G∗)
]

∝ exp
[

β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].
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• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Disclaimer:
no external magnetic field.

P
[

conf. σ ∈ {±1}V (G∗)
]

∝ exp
[

β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].

• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Phase transition (e.g., on Z
2)

E.g., Dobrushin boundary conditions: +1 on (ab) and −1 on (ba):

x < xcrit x = xcrit x > xcrit

• Ising (1925): no phase transition in 1D  doubts about 2+D;

• Peierls (1936): existence of the phase transition in 2D;

• Kramers-Wannier (1941): xself-dual =
√
2− 1 = tan(12 · π

4 );

• Onsager (1944): sharp phase transition at xcrit =
√
2− 1.



At criticality (e.g., on Z
2):

◦ Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8 for the magnetization
(some spin correlations in Z

2 at x ↑ xcrit).

◦ At criticality, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

x = xcrit



At criticality (e.g., on Z
2):

◦ Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8 for the magnetization
(some spin correlations in Z

2 at x ↑ xcrit).

◦ At criticality, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

• Question for the part #2:
Classical formulas for “diagonal” spin-spin
expectations in Z

2 via spinor observables x = xcrit

• Question for the part #3: Convergence and conformal
covariance of spin correlations in arbitrary planar domains:

δ−
n

8 · EΩδ
[σu1,δ . . . σun,δ ] → 〈σu1 . . . σun〉Ω

= 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·
∏

n

s=1 |ϕ′(us)|
1
8



2D Ising model as a dimer model (on a non-bipartite graph)
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph
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Te,e′ =

{

exp[ i2α(e, e
′)] · (xexe′)1/2

0



2D Ising model as a dimer model (on a non-bipartite graph)
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
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F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Kac–Ward formula (1952–..., 1999–...): Z2 = det[Id−T],

Te,e′ =

{

exp[ i2α(e, e
′)] · (xexe′)1/2

0

if e′ prolongs e but e′ 6= ē;
otherwise.

[ is equivalent to the Kasteleyn theorem for dimers on G

F

]



2D Ising model as a dimer model (on a non-bipartite graph)
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Note that V (GF ) ∼= {oriented edges and orners of G}

• Local relations for the entries K−1
a,e and K−1

a, of the inverse

Kasteleyn matrix: (an equivalent form of) K ·K−1= Id



Fermionic observables: combinatorial definition [Smirnov ’00s]

For an oriented edge a of G and a midpoint ze of another edge e,

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

,

where ηa denotes the (once and forever
fixed) square root of the direction of a.



Fermionic observables: combinatorial definition [Smirnov ’00s]

For an oriented edge a of G and a midpoint ze of another edge e,

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

,

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i

2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .

• When both a and e are “boundary”

edges, the factor ηae
− i

2
wind(a ze) = ±ηe

is fixed and FG (a, ze) becomes the parti-
tion function of the Ising model (on G ∗)
with Dobrushin boundary conditions.



Fermionic observables [Smirnov ’00s]: local relations

• Definition:

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

.

• Claim: FG (a, c) = e±
i

2
(θe−α(c,e)) · Proj[FG (a, ze) ; e∓

i

2
θeηe ] .



Fermionic observables [Smirnov ’00s]: local relations

• Definition:

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

.

• Claim: FG (a, c) = e±
i

2
(θe−α(c,e)) · Proj[FG (a, ze) ; e∓

i

2
θeηe ] .

• S-holomorphicity (special self-dual weights on isoradial graphs):

F

G

(a, ) = Proj[F
G

(a, z
e

) ; η


]

provided each edge e of G is a diagonal of a
rhombic tile with half-angle θe and the Ising
model weights are given by xe = tan(12θe).

• ⇒ critical weights on regular grids:
− square: xcrit = tan π

8 =
√
2− 1,

− honeycomb: xcrit = tan π
6 = 1/

√
3, ...



Fermionic observables [Smirnov ’00s]: local relations

• Definition:

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

.

• Claim: FG (a, c) = e±
i

2
(θe−α(c,e)) · Proj[FG (a, ze) ; e∓

i

2
θeηe ] .

• S-holomorphicity (special self-dual weights on isoradial graphs):

F

G

(a, ) = Proj[F
G

(a, z
e

) ; η


]

provided each edge e of G is a diagonal of a
rhombic tile with half-angle θe and the Ising
model weights are given by xe = tan(12θe).

• Via dimers on G

F

: FG (a, c) = ηcK
−1
c,a

FG (a, ze) = ηeK
−1
e,a + ηeK

−1
e,a



Fermionic observables [Smirnov ’00s]: local relations

• Definition:

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

.

• Claim: FG (a, c) = e±
i

2
(θe−α(c,e)) · Proj[FG (a, ze) ; e∓

i

2
θeηe ] .

• S-holomorphicity (special self-dual weights on isoradial graphs):

F

G

(a, ) = Proj[F
G

(a, z
e

) ; η


]

provided each edge e of G is a diagonal of a
rhombic tile with half-angle θe and the Ising
model weights are given by xe = tan(12θe).

• Fermionic observables per se are useful
but do not allow to analyze the spin corre-
lations: more involved ones are needed



Spinor observables and spin correlations

• spin configurations on G ∗

! domain walls on G
! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]
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• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:

E[σ
u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.



Spinor observables and spin correlations

• spin configurations on G ∗

! domain walls on G
! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:

E[σ
u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

• More invariant way to think about entries of K−1
[u1,...,un]

:

double-covers of G branching over u1, . . . ,un



Spinor observables and spin correlations

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[

Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑

ω∈ConfΩδ (u
→
1 , z)

φu1,...,un (ω, z) ·x
#edges(ω)
crit ,

φu1,...,un (ω, z) := e−
i

2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2

• wind (p (γ)) is the winding of
the path p (γ) : u→1 = u1+

δ
2 z ;

• #loops – those containing an
odd number of u1, . . . , un inside;

• sheet (p (γ) , z) = +1, if p(γ)
defines z , and −1 otherwise.
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Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[

Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑

ω∈ConfΩδ (u
→
1 , z)

φu1,...,un (ω, z) ·x
#edges(ω)
crit ,

φu1,...,un (ω, z) := e−
i

2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2

• Claim:

• wind (p (γ)) is the winding of
the path p (γ) : u→1 = u1+

δ
2 z ;

• #loops – those containing an
odd number of u1, . . . , un inside;

• sheet (p (γ) , z) = +1, if p(γ)
defines z , and −1 otherwise.

FΩδ
(u1+

3δ
2 ) =

E
+
Ωδ

[σu1+2δ . . . σun ]

E
+
Ωδ

[σu1 . . . σun ]



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn(x) := EC⋄[σ(0,0)σ(2n,0)]

where C
⋄ = {(k , s) : k , s ∈ Z, k+s ∈ 2Z} is the π

4 -rotated Z
2.

Theorem: [B.Kaufman–L.Onsager’48-49, C.N.Yang’52]

lim
n→∞D

n

(x) = (1− tan4 θ)
1
4 ∼ const · (xcrit−x)

1
4 for x < xcrit

[T.T.Wu’66] D
n

(xcrit) =
(

2
π

)n ∏n−1
s=1

(

1− 1
4s2

)s−n∼ const · (2n)− 1
4

Classical reference for many explicit computations:

B.M. McCoy and T.T. Wu “The two-dimensional Ising model”
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Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]

Onsager: ... I have found a general formula for the

evaluation of Toeplitz matrices. The only thing I

did not know was how to fill out the holes in the

mathematics and show the epsilons and the deltas and

all of that.
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Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn(x) := EC⋄[σ(0,0)σ(2n,0)]

where C
⋄ = {(k , s) : k , s ∈ Z, k+s ∈ 2Z} is the π

4 -rotated Z
2.

Theorem: [B.Kaufman–L.Onsager’48-49, C.N.Yang’52]

lim
n→∞D

n

(x) = (1− tan4 θ)
1
4 ∼ const · (xcrit−x)

1
4 for x < xcrit

Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]

Onsager: ... I have found a general formula for the

evaluation of Toeplitz matrices. The only thing I

did not know was how to fill out the holes in the

mathematics and show the epsilons and the deltas and

all of that.

... we talked to Kakutani and Kakutani talked

to Szego, and the mathematicians got there first.
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“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Local relations FC⋄(d)− m

4

∑

d ′∼d
FC⋄(d ′) = 0, m = sin (2θ)

For s > 0, denote Q
n,s(e

it) := Dn+1 ·
∑

k∈Z:k+s∈2Z e
1
2
ikt
FC⋄(k, s)

Then local relations (massive harmonicity) can be rewritten as

Qn,s(e
it) = (m2 cos t

2) · (Qn,s−1(e
it) + Qn,s+1(e

it)), s > 1.



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Local relations FC⋄(d)− m

4

∑

d ′∼d
FC⋄(d ′) = 0, m = sin (2θ)

For s > 0, denote Q
n,s(e

it) := Dn+1 ·
∑

k∈Z:k+s∈2Z e
1
2
ikt
FC⋄(k, s)

Boundedness as s → ∞ ⇒ Qn,1(e
it) =

[

1−(1−(m cos t

2
)2)

1
2

m cos t

2

]

Qn,0(e
it)
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Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Combinatorics of spinor observables ⇒ the following values on R:

Qn(e
it) := Qn,0(e

it) = 0 + Dn + . . .+ D∗
ne

int + 0
w(t)Qn(e

it) = . . . + Dn+1 + 0 + q2D∗
n+1e

int + . . . ,

where w(t) = |1−q

2
e

it | and q := tan θ 6 1.
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Conformal covariance of spin correlations at criticality

• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• CFT prediction:

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn

σ·〈σu1
. . . σ

u

n

〉+
Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏

n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[

〈σ
u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1

4 ×
∑

µ∈{±1}n

∏

s<m

∣

∣

∣

∣

us−um
us−um

∣

∣

∣

∣

µsµm
2



Conformal covariance of spin correlations at criticality

• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Ch.–Hongler–Izyurov]

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn

σ·〈σu1
. . . σ

u

n

〉+
Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏

n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[

〈σ
u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1
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Conformal covariance of spin correlations at criticality

• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Ch.–Hongler–Izyurov]

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn

σ·〈σu1
. . . σ

u

n

〉+
Ω

General strategy: • in discrete: encode spatial derivatives as
values of discrete holomorphic functions F δ that solve some

discrete boundary value problems;

• discrete→continuum: prove convergence of F δ to the solutions f
of the similar continuous b.v.p. [ non-trivial technicalities ];

• continuum→discrete: derive the limit of correlations
from the convergence F δ → f [ via coefficients at singularities ].



Conformal covariance of spin correlations at criticality

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z ♯) ≡ −f (z ♭), branches over u;

◦ Im
[

f (ζ)
√

n(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+ . . .
a

z

a+
δ
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◦ f (z ♯) ≡ −f (z ♭), branches over u;

◦ Im
[

f (ζ)
√

n(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+2AΩ(u) ·
√
z−u+ . . .

a

z

a+
δ

2

Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]

→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]

→ − Im [AΩ(u) ] .
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Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]

→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]

→ − Im [AΩ(u) ] .

Conformal covariance 1
8
: for any conformal map φ : Ω → Ω′,

◦ f[Ω,a](w) = f[Ω′,φ(a)](φ(w)) · (φ′(w))1/2 ;

◦ AΩ(z) = AΩ′(φ(z)) · φ′(z) + 1
8
· φ′′(z)/φ′(z) .
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◦ f (z ♯) ≡ −f (z ♭), branches over u;

◦ Im
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f (ζ)
√

n(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+2AΩ(u) ·
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Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]

→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]

→ − Im [AΩ(u) ] .

Quite a lot of technical work is needed, e.g.:

• to handle tricky boundary conditions (Dirichlet for
∫

Re[f 2dz ]);
• to prove convergence, incl. near singularities [ complex analysis ];
• to recover the normalization of E+

Ωδ
[σu1 ...σun ] [ probability ].



Explicit formulae for spin correlations in the general case

We define 〈σ
u1
. . . σ

u

n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑

n

s=1Re [AΩ(us ; u1, ..., ûs , ..., un)dus ],

and the multiplicative normalization is chosen so that

〈σu1 ...σun〉+Ω ∼ 〈σu1 ....σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−
1
4 as u2 → u1 ∈ Ω .

Coefficients AΩ(u1;u2, ...,un) are defined via the following b.v.p.:

◦ f (z ♯) ≡ −f (z ♭) is a holomorphic spinor on [Ω; u1, ..., un];

◦ Im
[

f (ζ)(n(ζ))
1
2

]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = ics · (z − us)
− 1

2 + . . . for some (unknown) cs ∈ R, s > 2;

◦ f (z) = (z − u1)
− 1

2 + 2AΩ(u1; u2, ..., un) · (z − u1)
1
2 + . . .



Explicit formulae for spin correlations in the general case

We define 〈σ
u1
. . . σ

u

n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑

n

s=1Re [AΩ(us ; u1, ..., ûs , ..., un)dus ],

and the multiplicative normalization is chosen so that

〈σu1 ...σun〉+Ω ∼ 〈σu1 ....σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−
1
4 as u2 → u1 ∈ Ω .

Remarks: • The closeness of the differential form LΩ,n and the
existence of an appropriate multiplicative normalization are not
immediate (can be deduced along the proof of convergence);

• Similar techniques can be applied for more involved boundary
conditions and/or in the multiply connected setup (when no
explicit formulae are available), as well as to other fields.
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x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1
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(e.g., probabilities of concrete topologies of domain walls)

• Near-critical (massive) regime x − xcrit = m · δ: convergence
of correlations, massive SLE3 curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [known only for x = 1 (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

Extended version of this talk: arXiv:1605.09035

Thank you!


