# Small Bergman-Orlicz spaces and their composition operators

S. Charpentier

Aix-Marseille University

25h Meeting in Mathematical Analysis - St Petersburg
29th of June 2016



## Definitions

Orlicz function: a function  $\psi: \mathbb{R}_+ \to \mathbb{R}_+$  convex such that  $\psi(x)/x \to \infty$  and  $\psi(0) = 0$ .

## Orlicz spaces

Let  $(\Omega, \mathbb{P})$  be a probability space and  $\psi$  an Orlicz function. The Orlicz space  $L^{\psi} = L^{\psi}(\Omega, \mathbb{P})$  is:

$$\left\{f:\Omega\to\mathbb{C} \text{ measurable, } \exists \alpha>0, \int_\Omega \psi\left(\frac{|f|}{\alpha}\right)d\mathbb{P}<\infty\right\}.$$

Morse-Transue space  $M^\psi=M^\psi(\Omega,\mathbb{P})$  is:

$$\left\{f:\Omega\to\mathbb{C} \text{ measurable, } \forall \alpha>0, \int_\Omega \psi\left(\frac{|f|}{\alpha}\right)d\mathbb{P}<\infty\right\}.$$



Endowed with the Luxemburg norm

$$\|f\|_{\psi}:=\inf\{\alpha>0,\,\int_{\Omega}\psi\left(\frac{|f|}{\alpha}\right)d\mathbb{P}\leq1\},$$

 $L^{\psi}$  and  $M^{\psi}$  are Banach spaces and  $M^{\psi}=\operatorname{clos}(L^{\infty})$  in  $L^{\psi}.$ 

## $L^p$ spaces

If  $\psi(x) = x^p$  then  $L^{\psi} = M^{\psi} = L^p$ . More generally  $L^{\psi} = M^{\psi}$  if and only if  $\psi$  satisfies the  $\Delta_2$ -condition.

# Bergman-Orlicz and Hardy-Orlicz spaces

## $A^{\psi}_{lpha}$ and $H^{\psi}$ , $N\geq 1$ .

- 1. The weighted Bergman-Orlicz space  $A_{\alpha}^{\psi}$  is the set  $L^{\psi}(\mathbb{B}_{N}, v_{\alpha}) \cap H(\mathbb{B}_{N})$ , with  $v_{\alpha} = c_{\alpha}(1 |z|^{2})^{\alpha}v$ ,  $\alpha > -1$ ; we also let  $AM_{\alpha}^{\psi} := M^{\psi}(\mathbb{B}_{N}, v_{\alpha}) \cap H(\mathbb{B}_{N})$ .
- 2. The Hardy-Orlicz space  $H^{\psi}$  is defined as

$$\left\{f \in H(\mathbb{B}_N); \sup_{0 < r < 1} \|f_r\|_{L^{\psi}(\mathbb{S}_N, \sigma_N)} < \infty \right\},\,$$

and  $HM^{\psi} = M^{\psi}(\mathbb{S}_N, \sigma_N) \cap H(\mathbb{B}_N)$ .

- 1.  $A_{\alpha}^{\psi}$ ,  $AM_{\alpha}^{\psi}$  (resp.  $H^{\psi}$  and  $HM^{\psi}$ ) are Banach subspaces of  $L^{\psi}(\mathbb{B}_{N}, v_{\alpha})$  (resp.  $L^{\psi}(\mathbb{S}_{N}, \sigma_{N})$ );
- 2. If  $\psi$  satisfies the  $\nabla_2$ -condition then  $(AM_\alpha^\psi)^{**}=A_\alpha^\psi$  (resp.  $(HM^\psi)^{**}=H^\psi$ ).



# A simple observation

## Evaluations $lpha \geq -1$

Point evalution functionals  $\delta_z$  are continuous on  $A_{\alpha}^{\psi}$ :

$$\|\delta_z\| \approx \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right).$$

Therefore

$$A_{\alpha}^{\psi} \subset H_{\mathbf{v}}^{\infty} := \left\{ f \in H(\mathbb{B}_{N}), \|f\|_{\mathbf{v}} := \sup_{\mathbf{z}} \frac{|f(\mathbf{z})|}{v(\mathbf{z})} < \infty \right\},$$

where 
$$v(z) = \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right)$$
.

#### Observation

If  $\alpha > -1$  and  $\psi$  grows fast (namely satisfies the  $\Delta^2$ -condition), then  $z \mapsto \|\delta_z\| \in L^{\psi}(\mathbb{B}_N, \nu_{\alpha})$ .



## A simple observation

## Evaluations $lpha \geq -1$

Point evalution functionals  $\delta_z$  are continuous on  $A_{\alpha}^{\psi}$ :

$$\|\delta_z\| \approx \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right).$$

Therefore

$$A_{\alpha}^{\psi} \subset H_{\nu}^{\infty} := \left\{ f \in H(\mathbb{B}_{N}), \|f\|_{\nu} := \sup_{z} \frac{|f(z)|}{\nu(z)} < \infty \right\},$$

where 
$$v(z) = \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right)$$
.

#### Observation

If  $\alpha > -1$  and  $\psi$  grows fast (namely satisfies the  $\Delta^2$ -condition), then  $z \mapsto \|\delta_z\| \in L^{\psi}(\mathbb{B}_N, \nu_{\alpha})$ .

## Consequences

### Direct consequences

 $\overline{\alpha} > -1$ 

Assume that  $\psi \in \Delta^2$ .

- 1.  $A_{\alpha}^{\psi} = H_{\nu}^{\infty}$  with equivalent norms, where  $v(z) = \psi^{-1}\left(\frac{1}{1-|z|}\right)$ ;
- 2.  $AM_{\alpha}^{\psi}=H_{\nu}^{0}$  where  $v(z)=\psi^{-1}\left(\frac{1}{1-|z|}\right)$ ;
- 3.  $A_{lpha}^{\psi}=A_{eta}^{\psi}$  for any eta>-1;
- 4. Every bounded operator from  $A_{\alpha}^{\psi}$  into  $L^{\psi}$  is order bounded into  $L^{\psi}$ .

Recall that an operator T from a Banach space X to a Banach lattice Y is order bounded into Z, Z a sublattice of Y, if there exists  $y \in Z$  such that for every  $x \in X$ ,  $||x|| \le 1$ ,  $|Tx| \le y$ .

# Applications to composition operators

Let  $\psi \in \Delta^2$  and  $\alpha > -1$ . For any  $\phi : \mathbb{B}_N \to \mathbb{B}_N$  holomorphic, the composition operator  $C_\phi : f \mapsto f \circ \phi$ ,  $f \in A_\alpha^\psi$ , is order bounded into  $L^\psi$ .

#### Theorem $\, 1 \,$

#### TFA E

- 1. Every composition operator is bounded on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ ;
- 2. Every composition operator is bounded on  $\mathit{AM}_lpha^\psi(\mathbb{B}_N)$  ;
- 3. Every composition operator acting on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$  is order bounded into  $L^{\psi}(\mathbb{B}_{N}, v_{\alpha})$ ;
- 4.  $A_{\alpha}^{\psi}(\mathbb{B}_N) = H_{\nu}^{\infty} \text{ with } \nu(z) = \psi^{-1}\left(\frac{1}{1-|z|}\right);$
- 5.  $\psi$  satisfies the  $\Delta^2$ -condition



# Applications to composition operators

Let  $\psi \in \Delta^2$  and  $\alpha > -1$ . For any  $\phi : \mathbb{B}_N \to \mathbb{B}_N$  holomorphic, the composition operator  $C_\phi : f \mapsto f \circ \phi$ ,  $f \in A_\alpha^\psi$ , is order bounded into  $L^\psi$ .

#### Theorem 1

#### TFAE:

- 1. Every composition operator is bounded on  $A^{\psi}_{\alpha}(\mathbb{B}_N)$ ;
- 2. Every composition operator is bounded on  $AM^{\psi}_{\alpha}(\mathbb{B}_{N})$ ;
- 3. Every composition operator acting on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$  is order bounded into  $L^{\psi}(\mathbb{B}_{N}, v_{\alpha})$ ;
- 4.  $A^{\psi}_{\alpha}(\mathbb{B}_N) = H^{\infty}_{\nu}$  with  $\nu(z) = \psi^{-1}\left(\frac{1}{1-|z|}\right)$ ;
- 5.  $\psi$  satisfies the  $\Delta^2$ -condition.



# Applications to composition operators - 2

#### Theorem 2

Let  $\alpha \geq -1$ , let  $\psi$  be an Orlicz function satisfying the  $\Delta^2$ -condition and let  $\phi : \mathbb{B}_N \to \mathbb{B}_N$  be holomorphic. TFAE:

- 1.  $C_{\phi}$  is compact on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ ;
- 2.  $C_{\phi}$  acting on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$  is order bounded into  $M^{\psi}(\mathbb{B}_{N})$ ; When  $\alpha > -1$  we have the following 3.

$$\|C_{\phi}\|_{e} = \lim_{|z| \to 1} \frac{\psi^{-1}(1/(1-|\phi(z)|))}{\psi^{-1}(1/(1-|z|))}.$$

# Between $\Delta_2$ and $\Delta^2$ ?

There exists  $\psi \in \Delta^1$  such that "boundedness", "order boundedness into  $L^{\psi}$ ", "order boundedness into  $M^{\psi}$ " and "compactness" are all distinguished by composition operators.

# Between $\Delta_2$ and $\Delta^2$ ?

$$C_{\alpha}(h) = \left\{ \begin{array}{l} \left\{ z \in \underline{\mathbb{B}}_{N}, \ 1 - |z| < h \right\} \ \text{if } \alpha > -1 \\ \left\{ z \in \overline{\mathbb{B}}_{N}, \ 1 - |z| < h \right\} \ \text{if } \alpha = -1 \end{array} \right..$$

## $\Delta^1$ -condition

Let  $\alpha \geq -1$ ,  $\psi \in \Delta^1$  and  $\phi : \mathbb{B}_N \to \mathbb{B}_N$  holomorphic.

•  $C_{\phi}$  acting on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$  is order bounded into  $L^{\psi}(\mathbb{B}_{N})$  iff  $\exists A>0$  such that  $\forall h\in(0,1)$ ,

$$\mu_{\phi}(C_{\alpha}(h)) \leq \frac{1}{\psi(A\psi^{-1}(1/h^{N(\alpha)}))}.$$

②  $C_{\phi}$  acting on  $A_{\alpha}^{\psi}(\mathbb{B}_{N})$  is order bounded into  $M^{\psi}(\mathbb{B}_{N})$  iff  $\forall A>0, \ \exists C_{A}>0$  and  $\exists h_{A}\in(0,1)$  such that  $\forall h\in(0,h_{A})$ ,

$$\mu_{\phi}(C_{\alpha}(h)) \leq \frac{C_A}{\psi(A\psi^{-1}(1/h^{N(\alpha)}))}.$$

