Small Bergman-Orlicz spaces and their composition operators S. Charpentier Aix-Marseille University 25h Meeting in Mathematical Analysis - St Petersburg 29th of June 2016 ## Definitions Orlicz function: a function $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ convex such that $\psi(x)/x \to \infty$ and $\psi(0) = 0$. ## Orlicz spaces Let (Ω, \mathbb{P}) be a probability space and ψ an Orlicz function. The Orlicz space $L^{\psi} = L^{\psi}(\Omega, \mathbb{P})$ is: $$\left\{f:\Omega\to\mathbb{C} \text{ measurable, } \exists \alpha>0, \int_\Omega \psi\left(\frac{|f|}{\alpha}\right)d\mathbb{P}<\infty\right\}.$$ Morse-Transue space $M^\psi=M^\psi(\Omega,\mathbb{P})$ is: $$\left\{f:\Omega\to\mathbb{C} \text{ measurable, } \forall \alpha>0, \int_\Omega \psi\left(\frac{|f|}{\alpha}\right)d\mathbb{P}<\infty\right\}.$$ Endowed with the Luxemburg norm $$\|f\|_{\psi}:=\inf\{\alpha>0,\,\int_{\Omega}\psi\left(\frac{|f|}{\alpha}\right)d\mathbb{P}\leq1\},$$ L^{ψ} and M^{ψ} are Banach spaces and $M^{\psi}=\operatorname{clos}(L^{\infty})$ in $L^{\psi}.$ ## L^p spaces If $\psi(x) = x^p$ then $L^{\psi} = M^{\psi} = L^p$. More generally $L^{\psi} = M^{\psi}$ if and only if ψ satisfies the Δ_2 -condition. # Bergman-Orlicz and Hardy-Orlicz spaces ## A^{ψ}_{lpha} and H^{ψ} , $N\geq 1$. - 1. The weighted Bergman-Orlicz space A_{α}^{ψ} is the set $L^{\psi}(\mathbb{B}_{N}, v_{\alpha}) \cap H(\mathbb{B}_{N})$, with $v_{\alpha} = c_{\alpha}(1 |z|^{2})^{\alpha}v$, $\alpha > -1$; we also let $AM_{\alpha}^{\psi} := M^{\psi}(\mathbb{B}_{N}, v_{\alpha}) \cap H(\mathbb{B}_{N})$. - 2. The Hardy-Orlicz space H^{ψ} is defined as $$\left\{f \in H(\mathbb{B}_N); \sup_{0 < r < 1} \|f_r\|_{L^{\psi}(\mathbb{S}_N, \sigma_N)} < \infty \right\},\,$$ and $HM^{\psi} = M^{\psi}(\mathbb{S}_N, \sigma_N) \cap H(\mathbb{B}_N)$. - 1. A_{α}^{ψ} , AM_{α}^{ψ} (resp. H^{ψ} and HM^{ψ}) are Banach subspaces of $L^{\psi}(\mathbb{B}_{N}, v_{\alpha})$ (resp. $L^{\psi}(\mathbb{S}_{N}, \sigma_{N})$); - 2. If ψ satisfies the ∇_2 -condition then $(AM_\alpha^\psi)^{**}=A_\alpha^\psi$ (resp. $(HM^\psi)^{**}=H^\psi$). # A simple observation ## Evaluations $lpha \geq -1$ Point evalution functionals δ_z are continuous on A_{α}^{ψ} : $$\|\delta_z\| \approx \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right).$$ Therefore $$A_{\alpha}^{\psi} \subset H_{\mathbf{v}}^{\infty} := \left\{ f \in H(\mathbb{B}_{N}), \|f\|_{\mathbf{v}} := \sup_{\mathbf{z}} \frac{|f(\mathbf{z})|}{v(\mathbf{z})} < \infty \right\},$$ where $$v(z) = \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right)$$. #### Observation If $\alpha > -1$ and ψ grows fast (namely satisfies the Δ^2 -condition), then $z \mapsto \|\delta_z\| \in L^{\psi}(\mathbb{B}_N, \nu_{\alpha})$. ## A simple observation ## Evaluations $lpha \geq -1$ Point evalution functionals δ_z are continuous on A_{α}^{ψ} : $$\|\delta_z\| \approx \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right).$$ Therefore $$A_{\alpha}^{\psi} \subset H_{\nu}^{\infty} := \left\{ f \in H(\mathbb{B}_{N}), \|f\|_{\nu} := \sup_{z} \frac{|f(z)|}{\nu(z)} < \infty \right\},$$ where $$v(z) = \psi^{-1}\left(\frac{1}{(1-|z|)^{N(\alpha)}}\right)$$. #### Observation If $\alpha > -1$ and ψ grows fast (namely satisfies the Δ^2 -condition), then $z \mapsto \|\delta_z\| \in L^{\psi}(\mathbb{B}_N, \nu_{\alpha})$. ## Consequences ### Direct consequences $\overline{\alpha} > -1$ Assume that $\psi \in \Delta^2$. - 1. $A_{\alpha}^{\psi} = H_{\nu}^{\infty}$ with equivalent norms, where $v(z) = \psi^{-1}\left(\frac{1}{1-|z|}\right)$; - 2. $AM_{\alpha}^{\psi}=H_{\nu}^{0}$ where $v(z)=\psi^{-1}\left(\frac{1}{1-|z|}\right)$; - 3. $A_{lpha}^{\psi}=A_{eta}^{\psi}$ for any eta>-1; - 4. Every bounded operator from A_{α}^{ψ} into L^{ψ} is order bounded into L^{ψ} . Recall that an operator T from a Banach space X to a Banach lattice Y is order bounded into Z, Z a sublattice of Y, if there exists $y \in Z$ such that for every $x \in X$, $||x|| \le 1$, $|Tx| \le y$. # Applications to composition operators Let $\psi \in \Delta^2$ and $\alpha > -1$. For any $\phi : \mathbb{B}_N \to \mathbb{B}_N$ holomorphic, the composition operator $C_\phi : f \mapsto f \circ \phi$, $f \in A_\alpha^\psi$, is order bounded into L^ψ . #### Theorem $\, 1 \,$ #### TFA E - 1. Every composition operator is bounded on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$; - 2. Every composition operator is bounded on $\mathit{AM}_lpha^\psi(\mathbb{B}_N)$; - 3. Every composition operator acting on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ is order bounded into $L^{\psi}(\mathbb{B}_{N}, v_{\alpha})$; - 4. $A_{\alpha}^{\psi}(\mathbb{B}_N) = H_{\nu}^{\infty} \text{ with } \nu(z) = \psi^{-1}\left(\frac{1}{1-|z|}\right);$ - 5. ψ satisfies the Δ^2 -condition # Applications to composition operators Let $\psi \in \Delta^2$ and $\alpha > -1$. For any $\phi : \mathbb{B}_N \to \mathbb{B}_N$ holomorphic, the composition operator $C_\phi : f \mapsto f \circ \phi$, $f \in A_\alpha^\psi$, is order bounded into L^ψ . #### Theorem 1 #### TFAE: - 1. Every composition operator is bounded on $A^{\psi}_{\alpha}(\mathbb{B}_N)$; - 2. Every composition operator is bounded on $AM^{\psi}_{\alpha}(\mathbb{B}_{N})$; - 3. Every composition operator acting on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ is order bounded into $L^{\psi}(\mathbb{B}_{N}, v_{\alpha})$; - 4. $A^{\psi}_{\alpha}(\mathbb{B}_N) = H^{\infty}_{\nu}$ with $\nu(z) = \psi^{-1}\left(\frac{1}{1-|z|}\right)$; - 5. ψ satisfies the Δ^2 -condition. # Applications to composition operators - 2 #### Theorem 2 Let $\alpha \geq -1$, let ψ be an Orlicz function satisfying the Δ^2 -condition and let $\phi : \mathbb{B}_N \to \mathbb{B}_N$ be holomorphic. TFAE: - 1. C_{ϕ} is compact on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$; - 2. C_{ϕ} acting on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ is order bounded into $M^{\psi}(\mathbb{B}_{N})$; When $\alpha > -1$ we have the following 3. $$\|C_{\phi}\|_{e} = \lim_{|z| \to 1} \frac{\psi^{-1}(1/(1-|\phi(z)|))}{\psi^{-1}(1/(1-|z|))}.$$ # Between Δ_2 and Δ^2 ? There exists $\psi \in \Delta^1$ such that "boundedness", "order boundedness into L^{ψ} ", "order boundedness into M^{ψ} " and "compactness" are all distinguished by composition operators. # Between Δ_2 and Δ^2 ? $$C_{\alpha}(h) = \left\{ \begin{array}{l} \left\{ z \in \underline{\mathbb{B}}_{N}, \ 1 - |z| < h \right\} \ \text{if } \alpha > -1 \\ \left\{ z \in \overline{\mathbb{B}}_{N}, \ 1 - |z| < h \right\} \ \text{if } \alpha = -1 \end{array} \right..$$ ## Δ^1 -condition Let $\alpha \geq -1$, $\psi \in \Delta^1$ and $\phi : \mathbb{B}_N \to \mathbb{B}_N$ holomorphic. • C_{ϕ} acting on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ is order bounded into $L^{\psi}(\mathbb{B}_{N})$ iff $\exists A>0$ such that $\forall h\in(0,1)$, $$\mu_{\phi}(C_{\alpha}(h)) \leq \frac{1}{\psi(A\psi^{-1}(1/h^{N(\alpha)}))}.$$ ② C_{ϕ} acting on $A_{\alpha}^{\psi}(\mathbb{B}_{N})$ is order bounded into $M^{\psi}(\mathbb{B}_{N})$ iff $\forall A>0, \ \exists C_{A}>0$ and $\exists h_{A}\in(0,1)$ such that $\forall h\in(0,h_{A})$, $$\mu_{\phi}(C_{\alpha}(h)) \leq \frac{C_A}{\psi(A\psi^{-1}(1/h^{N(\alpha)}))}.$$