Hardy-Hodge decomposition of vector fields

L. Baratchart (INRIA) 25-th Summer Analysis meeting in Mathematical Analysis 25–30 June, 2016 honoring the memory of V.P. Havin

• For $n \ge 3$, we consider harmonic potentials in divergence form:

$$P_{\operatorname{div} V}(x) = \int \frac{x - y}{|x - y|^{n-2}} \operatorname{div} V(y)$$

for some vector distribution $V = (v_1, v_2, \dots, v_n)^t$ on \mathbb{R}^n .

• For $n \ge 3$, we consider harmonic potentials in divergence form:

$$P_{\operatorname{div} V}(x) = \int \frac{x - y}{|x - y|^{n-2}} \operatorname{div} V(y)$$

for some vector distribution $V = (v_1, v_2, \dots, v_n)^t$ on \mathbb{R}^n .

• They solve $\Delta u = \operatorname{div} V$ on \mathbb{R}^n with "minimal growth" at infinity.

• For $n \ge 3$, we consider harmonic potentials in divergence form:

$$P_{{\rm div}\,V}(x)=\int\frac{x-y}{|x-y|^{n-2}}{\rm div}\,V(y)$$

for some vector distribution $V = (v_1, v_2, \cdots, v_n)^t$ on \mathbb{R}^n .

- They solve $\Delta u = \operatorname{div} V$ on \mathbb{R}^n with "minimal growth" at infinity.
- They occur frequently when modeling electro-magnetic phenomena in the quasi-static approximation to Maxwell's equations.

• EEG:

- EEG:
 - Brain assumed non magnetic medium,

• EEG:

- Brain assumed non magnetic medium,
- \bullet with constant electric conductivity $\sigma.$

EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .
- Then the electric potential is

$$u = P_{\text{div } J^p/\sigma}$$

- EEG:
 - Brain assumed non magnetic medium,
 - with constant electric conductivity σ .
 - Then the electric potential is

$$u = P_{\text{div } J^p/\sigma}$$

with J_p the so-called primary current.

Magnetization

- EEG:
 - Brain assumed non magnetic medium,
 - with constant electric conductivity σ .
 - Then the electric potential is

$$u = P_{\text{div } J^p/\sigma}$$

- Magnetization
 - If M is a magnetization, (density of magnetic moment),

- EEG:
 - Brain assumed non magnetic medium,
 - with constant electric conductivity σ .
 - Then the electric potential is

$$u = P_{\operatorname{div} J^p/\sigma}$$

- Magnetization
 - If M is a magnetization, (density of magnetic moment), in the absence of sources,

- EEG:
 - Brain assumed non magnetic medium,
 - with constant electric conductivity σ .
 - Then the electric potential is

$$u = P_{\text{div } J^p/\sigma}$$

- Magnetization
 - If M is a magnetization, (density of magnetic moment), in the absence of sources,
 - then the scalar magneic potential is

$$u = P_{\text{div } \mathbf{M}}$$
.

• The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain)

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.
- Likewise, the inverse magnetization problem is to recover the magnetization M on a given object,

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.
- Likewise, the inverse magnetization problem is to recover the magnetization ${\bf M}$ on a given object, from measurements of the field $H=-\nabla\phi$ near the object.

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.
- Likewise, the inverse magnetization problem is to recover the magnetization ${\bf M}$ on a given object, from measurements of the field $H=-\nabla\phi$ near the object.
- Today, inverse magnetization problems are a hot topic in Earth and Planetary Sciences.

• A basic question is: what are the densities V producing the zero field in a given component of $\mathbb{R}^n \setminus \operatorname{Supp} V$?

- A basic question is: what are the densities V producing the zero field in a given component of $\mathbb{R}^n \setminus \operatorname{Supp} V$?
- Equivalently: when is it that $\Phi_{\text{div}(V)}(X) = cst$ in a component (zero if the component is unbounded)?

- A basic question is: what are the densities V producing the zero field in a given component of $\mathbb{R}^n \setminus \operatorname{Supp} V$?
- Equivalently: when is it that $\Phi_{\text{div}(V)}(X) = cst$ in a component (zero if the component is unbounded)?
- In this case V is called silent from that component.

- A basic question is: what are the densities V producing the zero field in a given component of $\mathbb{R}^n \setminus \operatorname{Supp} V$?
- Equivalently: when is it that $\Phi_{\text{div}(V)}(X) = cst$ in a component (zero if the component is unbounded)?
- In this case *V* is called silent from that component.
- Let us look at the elementary case where V is supported on the horizontal plane with L^p density there, 1 .

- A basic question is: what are the densities V producing the zero field in a given component of $\mathbb{R}^n \setminus \operatorname{Supp} V$?
- Equivalently: when is it that $\Phi_{\text{div}(V)}(X) = cst$ in a component (zero if the component is unbounded)?
- In this case V is called silent from that component.
- Let us look at the elementary case where V is supported on the horizontal plane with L^p density there, 1 .
- This geometry is in fact realistic in scanning microscopy of rocks which are typically sanded down to thin slabs.

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

$$M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$$

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

$$M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$$

• At any $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $x_3 \neq 0$, the potential $P_{\text{div } V}$ is obtained by

letting
$$M$$
 act on $X' \mapsto (X - X')/|X - X'|^3$, $X' = \begin{pmatrix} x_1' \\ x_2' \\ 0 \end{pmatrix}$:

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

$$M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$$

• At any $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $x_3 \neq 0$, the potential $P_{\text{div } V}$ is obtained by letting M act on $X' \mapsto (X - X')/|X - X'|^3$, $X' = \begin{pmatrix} x_1' \\ x_2' \\ x_3 \end{pmatrix}$:

$$P_{\text{div }V} = \frac{1}{4\pi} \int_{\mathbb{R}^n} \left(\frac{m_1(X')(x_1 - x_1') + m_2(X')(x_2 - x_2')}{|X - X'|^3} + \frac{m_3(X')x_3}{|X - X'|^3} dx_1' dx_2' \right)$$

b

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

$$M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$$

• At any $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $x_3 \neq 0$, the potential $P_{\text{div } V}$ is obtained by letting M act on $X' \mapsto (X - X')/|X - X'|^3$, $X' = \begin{pmatrix} x_1' \\ x_2' \\ x_3 \end{pmatrix}$:

$$P_{\text{div }V} = \frac{1}{4\pi} \int_{\mathbb{R}^n} \left(\frac{m_1(X')(x_1 - x_1') + m_2(X')(x_2 - x_2')}{|X - X'|^3} + \frac{m_3(X')x_3}{|X - X'|^3} dx_1' dx_2' \right)$$

b

The thin-plate case cont'd

The thin-plate case cont'd

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

The thin-plate case cont'd

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

•

$$A_3(X) = \frac{1}{4\pi} \int_{\mathbb{R}^n} \frac{m_3(X')x_3}{|X - X'|^3} dx_1' dx_2'.$$

is $\operatorname{sgn} x_3$ times half the harmonic (Poisson) extension of m_3 : $A_3(X) = \operatorname{sgn} x_3 \mathcal{P}_X(m_3)/2$,

The thin-plate case cont'd

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

$$A_3(X) = rac{1}{4\pi} \int_{\mathbb{R}^n} rac{m_3(X')x_3}{|X - X'|^3} \mathrm{d}x_1' \mathrm{d}x_2'.$$

is $\operatorname{sgn} x_3$ times half the harmonic (Poisson) extension of m_3 : $A_3(X) = \operatorname{sgn} x_3 \mathcal{P}_X(m_3)/2$,

• and $A_j(X) = \mathcal{P}_X(R_j m_j)/2$ for j = 1, 2, where

•

The thin-plate case cont'd

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

$$A_3(X) = \frac{1}{4\pi} \int_{\mathbb{R}^n} \frac{m_3(X')x_3}{|X - X'|^3} dx_1' dx_2'.$$

is $\operatorname{sgn} x_3$ times half the harmonic (Poisson) extension of m_3 : $A_3(X) = \operatorname{sgn} x_3 \mathcal{P}_X(m_3)/2$,

• and $A_j(X) = \mathcal{P}_X(R_j m_j)/2$ for j = 1, 2, where

$$R_j(f)(Y) := \lim_{\epsilon \to 0} \frac{1}{2\pi} \iint_{\mathbb{R}^2 \setminus B(Y,\epsilon)} f(X') \frac{(y_j - x_j')}{|Y - X'|^3} dX', \qquad j = 1, 2,$$

are the Riesz transforms.

•

Silent L^p -distributions

Silent *L*^p-distributions

• Assume $x_3 > 0$.

Silent L^p-distributions

• Assume $x_3 > 0$. We just saw that

$$P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1 m_1 + R_2 m_2 + m_3).$$

Silent L^p -distributions

• Assume $x_3 > 0$. We just saw that

$$P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1 m_1 + R_2 m_2 + m_3).$$

 Since the Poisson extension of a function is zero iff the function is zero, M is silent from above iff

$$R_1m_1 + R_2m_2 + m_3 = 0.$$

Silent L^p-distributions

• Assume $x_3 > 0$. We just saw that

$$P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1 m_1 + R_2 m_2 + m_3).$$

 Since the Poisson extension of a function is zero iff the function is zero, M is silent from above iff

$$R_1m_1 + R_2m_2 + m_3 = 0.$$

• Likewise M is silent from below iff

$$R_1m_1 + R_2m_2 - m_3 = 0.$$

Silent L^p -distributions

• Assume $x_3 > 0$. We just saw that

$$P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1 m_1 + R_2 m_2 + m_3).$$

 Since the Poisson extension of a function is zero iff the function is zero, M is silent from above iff

$$R_1m_1 + R_2m_2 + m_3 = 0.$$

• Likewise M is silent from below iff

$$R_1 m_1 + R_2 m_2 - m_3 = 0.$$

• M is silent (from both sides) iff $R_1m_1 + R_2m_2 = 0$ and $m_3 = 0$.

Question

What do these quantities mean?

Question

What do these quantities mean?

To approach it, we introduce some classical function spaces.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^pdX'<\infty.$$

• Let \mathfrak{H}_{+}^{p} consist of ∇u , u harmonic in $\{x_3 > 0\}$, such that

$$\sup_{\mathsf{x}_3>0}\int_{\mathbb{R}^2}|\nabla u(\mathsf{X}',\mathsf{x}_3)|^p d\mathsf{X}'<\infty.$$

• ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f,R_2f,f)^t$, $f\in L^p(\mathbb{R}^2)$,

• Let \mathfrak{H}_{+}^{p} consist of ∇u , u harmonic in $\{x_3 > 0\}$, such that

$$\sup_{\mathsf{x}_3>0}\int_{\mathbb{R}^2}|\nabla u(\mathsf{X}',\mathsf{x}_3)|^p d\mathsf{X}'<\infty.$$

• ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f, R_2f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.

$$\sup_{\mathsf{x}_3>0}\int_{\mathbb{R}^2}|\nabla u(\mathsf{X}',\mathsf{x}_3)|^p d\mathsf{X}'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f, R_2f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space

$$\sup_{\mathsf{x}_3>0}\int_{\mathbb{R}^2}|\nabla u(\mathsf{X}',\mathsf{x}_3)|^pd\mathsf{X}'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f, R_2f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space
- The space \mathfrak{H}_{-}^{p} is defined similarly on $\{x_3 < 0\}$,

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^pdX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f, R_2f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space
- The space \mathfrak{H}_{-}^{p} is defined similarly on $\{x_3 < 0\}$, with traces $(-R_1f, -R_2f, f)^t$.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^pdX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f, R_2f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space
- The space \mathfrak{H}_{-}^{p} is defined similarly on $\{x_3 < 0\}$, with traces $(-R_1f, -R_2f, f)^t$. \mathfrak{H}_{\pm}^{p} were introduced by Stein-Weiss.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^pdX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1f, R_2f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space
- The space \mathfrak{H}_{-}^{p} is defined similarly on $\{x_3 < 0\}$, with traces $(-R_1f, -R_2f, f)^t$. \mathfrak{H}_{+}^{p} were introduced by Stein-Weiss.
- We put \mathcal{D}^p for divergence-free vector fields in $L^p(\mathbb{R}^2, \mathbb{R}^2)$.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

$$(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$$

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the orthogonal sum:

$$(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$$

• Thus, every 3-D vector field of L^p -class on \mathbb{R}^2 is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

$$(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$$

- Thus, every 3-D vector field of L^p -class on \mathbb{R}^2 is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- \bullet Analog to the decomposition of a complex function on $\mathbb R$ as the sum of two Hardy functions.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

$$(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$$

- Thus, every 3-D vector field of L^p -class on \mathbb{R}^2 is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on $\mathbb R$ as the sum of two Hardy functions. Divergence-free term is necessary for not every field is a gradient on $\mathbb R^2$.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

$$(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$$

- Thus, every 3-D vector field of L^p -class on \mathbb{R}^2 is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on $\mathbb R$ as the sum of two Hardy functions. Divergence-free term is necessary for not every field is a gradient on $\mathbb R^2$.
- ullet Projecting on \mathbb{R}^2 we get the standard Hodge decomposition

$$\left(L^p(\mathbb{R}^2)\right)^2 = \mathcal{G}^p \oplus \mathcal{D}^p,$$

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the orthogonal sum:

$$(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$$

- Thus, every 3-D vector field of L^p -class on \mathbb{R}^2 is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on $\mathbb R$ as the sum of two Hardy functions. Divergence-free term is necessary for not every field is a gradient on $\mathbb R^2$.
- ullet Projecting on \mathbb{R}^2 we get the standard Hodge decomposition

$$\left(L^p(\mathbb{R}^2)\right)^2 = \mathcal{G}^p \oplus \mathcal{D}^p,$$

where \mathcal{G}^p is the space of distributional gradients in $L^p(\mathbb{R}^2, \mathbb{R}^2)$.

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

$$f^+ := \frac{-R_1(m_1) - R_2(m_2) + m_3}{2}, \quad f^- := \frac{R_1(m_1)R_2(m_2) + m_3}{2}.$$

• Set $M = (m_1, m_2, m_3), d := R_2 m_1 - R_1 m_2$, and

$$f^+:=\frac{-R_1(m_1)-R_2(m_2)+m_3}{2},\quad f^-:=\frac{R_1(m_1)R_2(m_2)+m_3}{2}.$$

Then

$$M = (R_1f^+, R_2f^+, f^+) + (-R_1f^- - R_2f^-, f^-) + (-R_2d, R_1d, 0).$$

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

$$f^+:=\frac{-R_1(m_1)-R_2(m_2)+m_3}{2},\quad f^-:=\frac{R_1(m_1)R_2(m_2)+m_3}{2}.$$

Then

$$M = (R_1f^+, R_2f^+, f^+) + (-R_1f^- - R_2f^-, f^-) + (-R_2d, R_1d, 0).$$

• Easily checked using $R_1^2 + R_2^2 = -\mathrm{Id}$.

Silent *L*^p-distributions revisited

Silent L^p -distributions revisited

 By what precedes M is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.

Silent *L*^p-distributions revisited

- By what precedes M is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
- Likewise *M* is silent from below iff it is the sum of a harmonic gradient from below and a tangent divergence-free vector field.

Silent L^p -distributions revisited

- By what precedes M is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
- Likewise M is silent from below iff it is the sum of a harmonic gradient from below and a tangent divergence-free vector field.
- *M* is silent iff it is tangent and divergence-free.

Silent L^p -distributions revisited

- By what precedes M is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
- Likewise *M* is silent from below iff it is the sum of a harmonic gradient from below and a tangent divergence-free vector field.
- *M* is silent iff it is tangent and divergence-free.
- Transparent if we observe the orthogonality:

$$\mathfrak{H}^p_+ \perp \mathfrak{H}^q_- \quad \text{and} \quad \mathcal{D}^p \times \{0\} \perp \mathfrak{H}^q_\pm, \quad 1/p + 1/q = 1.$$

Easy extensions

• The result carries over to \mathbb{R}^n for $n \geq 3$, with obvious adjustement of the definitions.

- The result carries over to \mathbb{R}^n for $n \geq 3$, with obvious adjustement of the definitions.
- It extends to any class of functions or of distributions invariant under Riesz transforms, e.g. \mathfrak{h}^1 , BMO, $W^{-\infty,p}$ (i.e. finite sums of derivatives of any order of L^p -functions, 1).

- The result carries over to \mathbb{R}^n for $n \geq 3$, with obvious adjustement of the definitions.
- It extends to any class of functions or of distributions invariant under Riesz transforms, e.g. \mathfrak{h}^1 , BMO, $W^{-\infty,p}$ (i.e. finite sums of derivatives of any order of L^p -functions, 1). The latter contains all distributions with compact support.

- The result carries over to \mathbb{R}^n for $n \geq 3$, with obvious adjustement of the definitions.
- It extends to any class of functions or of distributions invariant under Riesz transforms, e.g. \mathfrak{h}^1 , BMO, $W^{-\infty,p}$ (i.e. finite sums of derivatives of any order of L^p -functions, 1). The latter contains all distributions with compact support.
- If $M \in (L^2(\mathbb{R}^n))^3$ then $P_{\mathfrak{H}^2_-}M$ yields the magnetization of least $(L^2(\mathbb{R}^n))^3$ -norm which is equivalent to M from above.

Is there a Hardy-Hodge decomposition on more general manifolds?

Is there a Hardy-Hodge decomposition on more general manifolds?

• We shall consider the case of a compact connected simply connected hypersurface \mathcal{M} embedded in \mathbb{R}^n which is locally a Lipschitz graph.

Is there a Hardy-Hodge decomposition on more general manifolds?

• We shall consider the case of a compact connected simply connected hypersurface \mathcal{M} embedded in \mathbb{R}^n which is locally a Lipschitz graph. Such an object we call a compact simply connected Lipschitz hypersurface for short.

Is there a Hardy-Hodge decomposition on more general manifolds?

- We shall consider the case of a compact connected simply connected hypersurface \mathcal{M} embedded in \mathbb{R}^n which is locally a Lipschitz graph. Such an object we call a compact simply connected Lipschitz hypersurface for short.
- There is no difficulty in defining Sobolev spaces $W^{1,p}(\mathcal{M})$ and \mathcal{M} inherits from \mathbb{R}^n a uniform Riemaniann structure $\langle .,. \rangle_{\mathcal{M}}$, therefore one can define tangential gradient vector fields \mathcal{G}^p , where L^p is understood with respect to the volume form σ .

Is there a Hardy-Hodge decomposition on more general manifolds?

- We shall consider the case of a compact connected simply connected hypersurface \mathcal{M} embedded in \mathbb{R}^n which is locally a Lipschitz graph. Such an object we call a compact simply connected Lipschitz hypersurface for short.
- There is no difficulty in defining Sobolev spaces $W^{1,p}(\mathcal{M})$ and \mathcal{M} inherits from \mathbb{R}^n a uniform Riemaniann structure $\langle ., . \rangle_{\mathcal{M}}$, therefore one can define tangential gradient vector fields \mathcal{G}^p , where L^p is understood with respect to the volume form σ .
- One can then define $\mathcal{D}^p = (\mathcal{G}^q)^{\perp}$ for the pairing

$$(G,D):=\int_{\mathcal{M}}\langle G,D\rangle_{\mathcal{M}}d\sigma,\quad 1/p+1/q=1.$$

• We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For $1 , we set <math>\mathcal{H}^p_\pm$ to be the space of harmonic gradients in Ω^\pm whose nontangential maximal function lies in $L^p(\mathcal{M})$.

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For $1 , we set <math>\mathcal{H}^p_\pm$ to be the space of harmonic gradients in Ω^\pm whose nontangential maximal function lies in $L^p(\mathcal{M})$.
- For $p > p_0(\mathcal{M}) = 2 \varepsilon(\mathcal{M})$, elements of \mathcal{H}^p_{\pm}) have nontangential limits on \mathcal{M} from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For $1 , we set <math>\mathcal{H}^p_\pm$ to be the space of harmonic gradients in Ω^\pm whose nontangential maximal function lies in $L^p(\mathcal{M})$.
- For $p > p_0(\mathcal{M}) = 2 \varepsilon(\mathcal{M})$, elements of \mathcal{H}^p_{\pm}) have nontangential limits on \mathcal{M} from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].
- When \mathcal{M} is smooth we may pick $p_0 = 1$.

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For $1 , we set <math>\mathcal{H}^p_{\pm}$ to be the space of harmonic gradients in Ω^{\pm} whose nontangential maximal function lies in $L^p(\mathcal{M})$.
- For $p > p_0(\mathcal{M}) = 2 \varepsilon(\mathcal{M})$, elements of \mathcal{H}^p_{\pm}) have nontangential limits on \mathcal{M} from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].
- When \mathcal{M} is smooth we may pick $p_0 = 1$.
- Note the above nontangential limits are not tangent to \mathcal{M} , hence do not belong to \mathcal{G}^p .

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For $1 , we set <math>\mathcal{H}^p_{\pm}$ to be the space of harmonic gradients in Ω^{\pm} whose nontangential maximal function lies in $L^p(\mathcal{M})$.
- For $p > p_0(\mathcal{M}) = 2 \varepsilon(\mathcal{M})$, elements of \mathcal{H}^p_{\pm}) have nontangential limits on \mathcal{M} from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].
- When \mathcal{M} is smooth we may pick $p_0 = 1$.
- Note the above nontangential limits are not tangent to \mathcal{M} , hence do not belong to \mathcal{G}^p .

Theorem

Let \mathcal{M} be a compact simply connected Lipschitz hypersurface in \mathbb{R}^n and $p_0(\mathcal{M}) . Then, there is a direct sum$

$$(L^p(\mathcal{M}))^n = \mathcal{H}^p_+ \oplus \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}).$$

When \mathcal{M} is smooth, the result holds for 1 .

Theorem

Let \mathcal{M} be a compact simply connected Lipschitz hypersurface in \mathbb{R}^n and $p_0(\mathcal{M}) . Then, there is a direct sum$

$$(L^p(\mathcal{M}))^n = \mathcal{H}^p_+ \oplus \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}).$$

When \mathcal{M} is smooth, the result holds for 1 .

• The result extends with obvious modifications to the case where \mathcal{M} is not connected, and also to Lipschitz graphs.

Theorem

Let \mathcal{M} be a compact simply connected Lipschitz hypersurface in \mathbb{R}^n and $p_0(\mathcal{M}) . Then, there is a direct sum$

$$(L^p(\mathcal{M}))^n = \mathcal{H}^p_+ \oplus \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}).$$

When \mathcal{M} is smooth, the result holds for 1 .

- The result extends with obvious modifications to the case where \mathcal{M} is not connected, and also to Lipschitz graphs.
- ullet When ${\cal M}$ is smooth the decomposition holds in more general spaces of functions or distributional currents.

• Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009].

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω^+ and solve the Dirichlet problem $u_{|\mathcal{M}} = \psi$.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω^+ and solve the Dirichlet problem $u_{|\mathcal{M}} = \psi$. Then $\nabla u \in \mathcal{H}^p_+$ [Verchota,1984] and the tangential component of its nontangential limit on \mathcal{M} is G.

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω^+ and solve the Dirichlet problem $u_{|\mathcal{M}} = \psi$. Then $\nabla u \in \mathcal{H}^p_+$ [Verchota,1984] and the tangential component of its nontangential limit on \mathcal{M} is G.
- Thus, we are left to decompose $V D \nabla u$ which is a normal vector field on \mathcal{M} .

- Let $V \in L^p(\mathcal{M})^n$. Write $V = V_n + V_t$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω^+ and solve the Dirichlet problem $u_{|\mathcal{M}} = \psi$. Then $\nabla u \in \mathcal{H}^p_+$ [Verchota,1984] and the tangential component of its nontangential limit on \mathcal{M} is G.
- Thus, we are left to decompose $V-D-\nabla u$ which is a normal vector field on \mathcal{M} . For this we need preliminaries in Clifford analysis. We restrict to n=3 for simplicity.

Some Clifford analysis

Some Clifford analysis

• $\mathfrak C$ is the skew unital algebra generated over $\mathbb R$ by $\{e_1,e_2,e_3\}$ with:

$$e_j^2 = -1$$
, $e_i e_j = -e_j e_i$.

Some Clifford analysis

• $\mathfrak C$ is the skew unital algebra generated over $\mathbb R$ by $\{e_1,e_2,e_3\}$ with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

ullet A typical element of ${\mathfrak C}$ is of the form

$$z = x_0 + x_1e_1 + x_2e_2 + x_3e_3 + x_{1,2}e_1e_2 + x_{2,3}e_2e_3 + x_{1,3}e_1e_3 + x_{123}e_1e_2e_3$$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

• $\mathfrak C$ is the skew unital algebra generated over $\mathbb R$ by $\{e_1,e_2,e_3\}$ with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

ullet A typical element of ${\mathfrak C}$ is of the form

$$z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

• x_0 is the scalar part of z, denoted by $\operatorname{Sc} z$;

• $\mathfrak C$ is the skew unital algebra generated over $\mathbb R$ by $\{e_1,e_2,e_3\}$ with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

ullet A typical element of ${\mathfrak C}$ is of the form

$$z = x_0 + x_1e_1 + x_2e_2 + x_3e_3 + x_{1,2}e_1e_2 + x_{2,3}e_2e_3 + x_{1,3}e_1e_3 + x_{123}e_1e_2e_3$$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

- x_0 is the scalar part of z, denoted by Sc z;
- $x_1e_1 + x_2e_2 + x_3e_3$, is the vector part of z denoted as vec z;

• $\mathfrak C$ is the skew unital algebra generated over $\mathbb R$ by $\{e_1,e_2,e_3\}$ with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

ullet A typical element of ${\mathfrak C}$ is of the form

$$z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$$

- where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers. • x_0 is the scalar part of z, denoted by $\operatorname{Sc} z$;
 - $x_1e_1 + x_2e_2 + x_3e_3$, is the *vector part* of *z* denoted as vec z; Clifford vectors get identified with Euclidean vectors in \mathbb{R}^3 .

• \mathfrak{C} is the skew unital algebra generated over \mathbb{R} by $\{e_1, e_2, e_3\}$ with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

ullet A typical element of ${\mathfrak C}$ is of the form

$$z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

- x_0 is the scalar part of z, denoted by $\operatorname{Sc} z$;
- $x_1e_1 + x_2e_2 + x_3e_3$, is the *vector part* of *z* denoted as vec z; Clifford vectors get identified with Euclidean vectors in \mathbb{R}^3 .
- The conjugate of z is

$$\bar{z} = x_0 - x_1 e_1 - x_2 e_2 - x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{3,1} e_3 e_1 - x_{123} e_1 e_2 e_3.$$

• $\mathfrak C$ is the skew unital algebra generated over $\mathbb R$ by $\{e_1,e_2,e_3\}$ with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

ullet A typical element of ${\mathfrak C}$ is of the form

$$z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$$

- where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.
 - x_0 is the scalar part of z, denoted by $\operatorname{Sc} z$;
 - $x_1e_1 + x_2e_2 + x_3e_3$, is the *vector part* of *z* denoted as vec z; Clifford vectors get identified with Euclidean vectors in \mathbb{R}^3 .
- The conjugate of z is

$$\bar{z} = x_0 - x_1 e_1 - x_2 e_2 - x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{3,1} e_3 e_1 - x_{123} e_1 e_2 e_3.$$

• The norm of z is $|z| = (\sum_{0 \le k \le 3} x_k^2 + \sum_{i \le j} x_{i,j}^2 + x_{123}^2)^{1/2}$.

• We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

• A \mathfrak{C} -valued fonction f is left (resp.right) monogenic on its open domain of definition if Df = 0 (resp. fD = 0).

We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

• A \mathfrak{C} -valued fonction f is left (resp.right) monogenic on its open domain of definition if Df = 0 (resp. fD = 0). It is monogenic iff it is left and right monogenic.

We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

• A \mathfrak{C} -valued fonction f is left (resp.right) monogenic on its open domain of definition if Df = 0 (resp. fD = 0). It is monogenic iff it is left and right monogenic.

Lemma

A vector-valued function is left monogenic if and only if it is monogenic, if and only if it is the gradient of a harmonic function.

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see e.g. "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := \frac{1}{4\pi} \int_{\mathcal{M}} \frac{\overline{y-z}}{|y-z|^3} n(y) f^+(y) d\sigma(y), \qquad z \in \Omega^+.$$

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see e.g. "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := \frac{1}{4\pi} \int_{\mathcal{M}} \frac{\overline{y-z}}{|y-z|^3} n(y) f^+(y) d\sigma(y), \qquad z \in \Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see e.g. "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := \frac{1}{4\pi} \int_{\mathcal{M}} \frac{\overline{y-z}}{|y-z|^3} n(y) f^+(y) d\sigma(y), \qquad z \in \Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

• If $z \in \Omega^-$, then the above right hand side is zero.

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see e.g. "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := \frac{1}{4\pi} \int_{\mathcal{M}} \frac{\overline{y-z}}{|y-z|^3} n(y) f^+(y) d\sigma(y), \qquad z \in \Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

- If $z \in \Omega^-$, then the above right hand side is zero.
- A similar result holds if f is left monogenic in Ω^- ;

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see e.g. "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := \frac{1}{4\pi} \int_{\mathcal{M}} \frac{\overline{y-z}}{|y-z|^3} n(y) f^+(y) d\sigma(y), \qquad z \in \Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

- If $z \in \Omega^-$, then the above right hand side is zero.
- A similar result holds if f is left monogenic in Ω^- ; the nontangential limit on \mathcal{M} from Ω^- is denoted by $f^- \in L^p(\mathcal{M})$.

• For a \mathfrak{C} -valued $h \in L^p(\mathcal{M})$, Ch is left monogenic on $\mathbb{R}^3 \setminus \mathcal{M}$ and its nontangential maximal function lies in $L^p(\mathcal{M})$ [Coifman-McIntosh-Meyer, 1982].

- For a \mathfrak{C} -valued $h \in L^p(\mathcal{M})$, Ch is left monogenic on $\mathbb{R}^3 \setminus \mathcal{M}$ and its nontangential maximal function lies in $L^p(\mathcal{M})$ [Coifman-McIntosh-Meyer, 1982].
- Moreover $\mathcal{C}h$ has non-tangential limits $\mathcal{C}^\pm h$ a.e. on \mathcal{M} from Ω^\pm

- For a \mathfrak{C} -valued $h \in L^p(\mathcal{M})$, Ch is left monogenic on $\mathbb{R}^3 \setminus \mathcal{M}$ and its nontangential maximal function lies in $L^p(\mathcal{M})$ [Coifman-McIntosh-Meyer, 1982].
- Moreover $\mathcal{C}h$ has non-tangential limits $\mathcal{C}^\pm h$ a.e. on \mathcal{M} from Ω^\pm with

$$C^{\pm}h(y) = \pm \frac{h(y)}{2} + \mathcal{SC}h(y), \qquad y \in \mathcal{M},$$

where $\mathcal{SC}h$ is the singular Cauchy integral operator:

$$\mathcal{SC}h(y) = \frac{1}{4\pi} \lim_{\varepsilon \to 0} \int_{\mathcal{M} \setminus B(y,\varepsilon)} \frac{\overline{\xi - y}}{|\xi - y|^3} n(\xi) h(\xi) d\sigma(\xi), \qquad y \in \mathcal{M}.$$

- For a \mathfrak{C} -valued $h \in L^p(\mathcal{M})$, Ch is left monogenic on $\mathbb{R}^3 \setminus \mathcal{M}$ and its nontangential maximal function lies in $L^p(\mathcal{M})$ [Coifman-McIntosh-Meyer, 1982].
- Moreover $\mathcal{C}h$ has non-tangential limits $\mathcal{C}^\pm h$ a.e. on \mathcal{M} from Ω^\pm with

$$C^{\pm}h(y) = \pm \frac{h(y)}{2} + \mathcal{SC}h(y), \qquad y \in \mathcal{M},$$

where $\mathcal{SC}h$ is the singular Cauchy integral operator:

$$\mathcal{SC}h(y) = \frac{1}{4\pi} \lim_{\varepsilon \to 0} \int_{\mathcal{M} \setminus B(y,\varepsilon)} \frac{\overline{\xi - y}}{|\xi - y|^3} n(\xi) h(\xi) d\sigma(\xi), \qquad y \in \mathcal{M}.$$

• This gives us an analog of the Plemelj formula:

$$C^+h(y)-C^-h(y)=h(y).$$

• Let h be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued

- Let h be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued
- Write $h = \mathcal{C}^+ h \mathcal{C}^- h$ by Plemelj formula. Since h is normal, $\mathcal{C}^{\pm} h \in \mathcal{H}^p_{\pm}$. Indeed, if h(y) is normal to \mathcal{M} at y, the \mathfrak{C} -product n(y)h(y) is scalar-valued, so the integrand in the definition of $\mathcal{C}h$ is vector valued.

- Let h be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued
- Write $h = \mathcal{C}^+ h \mathcal{C}^- h$ by Plemelj formula. Since h is normal, $\mathcal{C}^{\pm} h \in \mathcal{H}^p_{\pm}$. Indeed, if h(y) is normal to \mathcal{M} at y, the \mathfrak{C} -product n(y)h(y) is scalar-valued, so the integrand in the definition of $\mathcal{C}h$ is vector valued. Hence $\mathcal{C}h$ is vector-valued and otherwise monogenic, therefore it is a harmonic gradient. This proves existence of the decomposition.

- Let h be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued
- Write $h = \mathcal{C}^+ h \mathcal{C}^- h$ by Plemelj formula. Since h is normal, $\mathcal{C}^{\pm} h \in \mathcal{H}^p_{\pm}$. Indeed, if h(y) is normal to \mathcal{M} at y, the \mathfrak{C} -product n(y)h(y) is scalar-valued, so the integrand in the definition of $\mathcal{C}h$ is vector valued. Hence $\mathcal{C}h$ is vector-valued and otherwise monogenic, therefore it is a harmonic gradient. This proves existence of the decomposition.
- Uniqueness follows from uniqueness of the Hodge decomposition and the Liouville theorem for harmonic functions.

• Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.

- Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.
- Write $m = \psi n + m_t$ where n is the normal and m_t the tangential component.

- Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.
- Write $m=\psi n+m_t$ where n is the normal and m_t the tangential component. Let R be the rotation by $-\pi/2$ in the tangent plane and $R(m_t)=D+G$ the Hodge decomposition.

Proposition

The distribution is silent from outside if and only if

$$2\pi\psi(y) = -\lim_{\varepsilon \to 0} \int_{\mathcal{M} \setminus B(y,\varepsilon)} \frac{\xi - y}{|\xi - y|^3} \cdot (\psi n + R^{-1}(D))(\xi) d\sigma(\xi) \quad y \in \mathcal{M}.$$

More complicated equation involving the curvature.

- Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.
- Write $m=\psi n+m_t$ where n is the normal and m_t the tangential component. Let R be the rotation by $-\pi/2$ in the tangent plane and $R(m_t)=D+G$ the Hodge decomposition.

Proposition

The distribution is silent from outside if and only if

$$2\pi\psi(y) = -\lim_{\varepsilon \to 0} \int_{\mathcal{M} \setminus B(y,\varepsilon)} \frac{\xi - y}{|\xi - y|^3} \cdot (\psi n + R^{-1}(D))(\xi) d\sigma(\xi) \quad y \in \mathcal{M}.$$

More complicated equation involving the curvature. When the latter is constant one gets the previous characterization. Still silence from both sides means tangent and divergence-free.

 In C, rational approximation amounts to approximation by (conjugates of) gradients of discrete logarithmic potentials with finitely many masses.

- In C, rational approximation amounts to approximation by (conjugates of) gradients of discrete logarithmic potentials with finitely many masses.
- In Rⁿ, let rational approximation mean approximation by gradients of discrete harmonic potentials with finitely many masses.

- In C, rational approximation amounts to approximation by (conjugates of) gradients of discrete logarithmic potentials with finitely many masses.
- In \mathbb{R}^n , let rational approximation mean approximation by gradients of discrete harmonic potentials with finitely many masses. The Hardy-Hodge decomposition implies:

Theorem

Let S be a Lipschitz regular surface patch on a compact connected smooth hypersurface $\mathcal{M} \subset \mathbb{R}^n$. Let v be \mathbb{R}^n -valued in $L^p(S)$, 1 . Then, <math>v can be approximated arbitrarily close by rationals in $L^p(S)$ iff the tangential component of v is a gradient.

 By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure.

 By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure. The same holds on a smooth manifold.

- By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure. The same holds on a smooth manifold.
- A fortiori then, a compact set containing no such arc is a grad-set for L^p (any field is approximable y a gradient).

- By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure. The same holds on a smooth manifold.
- A fortiori then, a compact set containing no such arc is a grad-set for L^p (any field is approximable y a gradient).
 The Hardy-Hodge decomposition now implies:

$\mathsf{Theorem}$

Let K be a closed set in a compact connected smooth hypersurface $\mathcal{M} \subset \mathbb{R}^n$, and assume that K contains no simple rectifiable arc of positive length. Then, each \mathbb{R}^n -valued v in $L^p(K)$ can be approximated arbitrary close by rationals in $L^p(K)$, 1 .